Master Biomedical Engineering, M2 track Bioengineering and Innovation in Neuroscience

The whole statistics module is shared with the BioMat and BioMech tracks, as part of UE 3.2 "Research Methodology".
Parts I, II, III of the statistics module will be the subject of a 1h30 multiple-choice test, followed by a 2h-debriefing session. Part IV is the subject of a 4h lecture, plus a Matlab tutorial (4h computer session), which is relevant to UE 3.7-8 "Brain-computer interfaces : from modeling to engineering".

  • Introduction (pdf)
  • I. Probability space (pdf)
    Sample space and events
    The axioms of probability
    Conditional probability, independence and Bayes theorem
    Application to the evaluation of a diagnostic test
  • II. Random variables (pdf)
    Definitions, descriptive statistics
    Discrete probability distributions
    Continuous probability distributions
  • III. Point and interval estimation (pdf)
    Point estimation
    Interval estimation
    Examples drawn from publications
  • IV. Statistical hypothesis testing (pdf)
    Decision and probabilities of error
    Comparing two samples
    P-value and type I error risk
    Chi-square tests
    One-way analysis of variance

STATISTICAL TABLES

TUTORIAL WITH MATLAB’S STATISTICS TOOLBOX

THE R SOTFWARE FOR STATISTICAL COMPUTING

Haut de page



À lire aussi...

Statistique appliquée à l’exploitation de mesures

Par Isabelle Rivals, maître de conférences, Équipe de Statistique Appliquée, ESPCI ParisTech. Ce cours s’adresse aux étudiants de MTX4 de (...) 

> Lire la suite...

Statistique appliquée à la Biologie

Ce cours s’adresse aux étudiants du Mastère Spécialisé de Bioingénierie de l’ESPCI ParisTech. Les ressources pédagogiques sont en accès restreint à (...) 

> Lire la suite...