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In the nervous system, intrinsic properties of neurones and synapses on one hand, architectural features of the network on
the other hand contribute to the neuronal dynamics.

Models of neural networks based on neurones of Hodgkin-Huxley (HH) type exhibit rich dynamical properties
reproducing quite well some neural activities observed in different structures of the nervous system. In such models
however, a systematic exploration of the dynamical role of the neuronal intrinsic properties and the features of the
networks can’t be performed because of the huge number of involved parameters. Moreover, the number of differential
equations is such that time integration limits the number of neurones in a network. The simplified neuronal models of
Integrate&Fire (IF) type reduce the number of parameters providing informative simulations with large networks (see
[1], for instance). But these models do not allow a distinction between the intrinsic properties of the neurones and of the
synapses, and the dynamical impact of the network architecture features. In a network of discrete time units as the MCP
ones, the biological plausibility is far lower than in the previously mentioned continuous time models, HH or IF.

The networks of the binary MCP neurones allow the study of dynamical properties induced by the connectivity
parameters only, these parameters being the signs, the weights and the delays of the synaptic connections. In this context
we have shown that a recurrent network of MCP neurones (200 units), with equal populations of excitatory and
inhibitory neurones, synchronously updated, reveal rich dynamical behaviours. In many cases, it exhibits complex
spatio-temporal activities based on oscillations of the number of active neurones. The groups of active neurones change
from one oscillation to another one, realizing patterns characterised by ‘distributed synchrony’ which can be
characterized using a complexity index, the NED (Normalised Euclidean Distance) [2]. Such patterns are good
candidates to be spatio-temporal codes : they remind the neural activity recorded experimentally in the locust olfactory
system. Indeed, in response to an applied stimulus, some neurones reveal a non stimulus-specific oscillation, figuring an
“internal clock”, co-emergent with a stimulus-specific spatio-temporal pattern of these neurones [3].

In order to evaluate the contribution of intrinsic properties of neurones and synapses, we implemented the architecture of
the MCP network into a network of continuous time neurones. As a first step, we chose the Izhikevich model (I1Z) for its
biological plausibility combined with its computational efficiency [4]. With this type of network it is possible to display
the temporal evolution of the membrane potential of each unit, including its spiking activity. Under some conditions,
which imply a temporal organisation and static synaptic saturations, we have shown that the IZ network behaves exactly
as the MCP one [5]. As a second step, we can remove the temporal constraints related to the architecture so that the
dynamics of the network is essentially driven by the neuronal intrinsic properties. The further step consists on the
introduction of dynamic synapses, which may play a major role in setting clocks in the system.



Step 1: Clocks in networks of discrete and continuous time formal neurones

ABSTRACT

For the study of neuronal dynamics in the central
nervous system, we use neural network simulations
aiming at distinguishing the contributions of the
network architecture from the neurone intrinsic
properties. Indeed, the specific features of these two
levels, respectively recurrence and non-linearity, are at
the origine of complex dynamical behaviours In
addition, each level brings its own temporal constraints.
A rich repertoire of dynamical behaviours emerge in
McCulloch&Pitts (MCP) networks, as a result of
interactions of the network architecture and the non-
linear simple units. Such networks are good tools in
order to explore the impact of the network connection
parameters on its dynamics. In order to show that these
studies are biologically relevant, we go further toward
their biological plausibility by replacing the discrete
time MCP neurons by continuous time neurons, for
instance the Izhikevich model (IZ). There are many
differences between these two types of neurons,
however once defined some appropriate updating rules
for the 1Z model, any network architecture
implemented in both models lead them to exhibit
exactly the same spatio-temporal activity. The present
step of the project leads us to analyze the different time
scales involved in the two models, the synchrony of the
updating, and the emergence of an “internal clock” due
to the architecture.
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A same dynamical behaviour for networks
of two different neuronal models

1.1 MCP network

In a simulation of a network of MCP neurones, we can
consider two time scales.

(I) The first one is related to the neurone update
processing. Each update processing takes a computation
time in order to compute the value 0 or 1 for the state of
each of the binary units of the network, according to the
balance of its active afferent synapses. The
computational time step At is the update time step.
When a neurone is updated at a given time, it means
that, at this time, the state of the network is available for
this unit and it is entirely defined by the synaptic
balance. An MCP neuron is called a ‘discrete time’
neuron.

If all the units of the network are updated within every
At of the simulation, the dynamics is synchronous; if
only some of the units are updated, the dynamics is
asynchronous. There is only one rule for synchrony,
while several rules may be defined for asynchrony. At
the end of each time step, we get the state of the

network. Let us call ¢, this instant: the state of the
network at 7 is given by the binary vector § (t) whose

dimension is the size of the network. The next update
instant is defined as (#+1), the unit (1) figuring the time
step At. Therefore, an MCP network has an implicit,
intrinsic clock; with a synchronous update, at each beat
of the clock the state of each neuron can be either O or
1, whatever its state at the previous beat;. This clock
defines a temporal grid on which the dynamics of the
network settles down.

(IT) When the network activity is characterized by a
periodic or quasi-periodic global behaviour of the
neurones it induces a second time scale. An eigen-
frequency dominates the dynamics, eliciting an eigen-
time 7, multiple of At, basis of an emergent internal
clock. This internal clock depends only on the network
architecture, which includes all the connectivity
parameters, as synaptic signs, weights and delays. The
spatio-temporal complexity feature of the neural
activities around the emergent internal clock is also a
product of the architecture. This complexity can be
characterized by a scalar descriptor, the ‘Normalized
Euclidean Distance’ (NED) [2], which measures the
temporal distribution of the neuronal activities along the
successive periods of the internal clock oscillations.
With this descriptor, we can study the relationship
between some parameters of the network architecture
and the network behaviour. The possibility to study
such structure-function relationships is one of the major
advantages offered by the MCP networks, another one
being the rapidity of getting simulations.

Now, what is the degree of relevance of such studies in
the framework of questions about the dynamics of
biological neurons? We are looking for the conditions
which allow a network of continuous time neurons,
more biologically plausible IZ neurones for instance, to
exhibit neuronal activities entirely driven by the
network architecture. In other words, which temporal
constraints may lead an IZ network to exhibit a neural
dynamics strictly identical to the one of a same network
(i.e. a network equivalent from the architectural point of
view) of MCP neurons?

1.2 IZ network

Two major properties distinguish an IZ continuous time
neurone from an MCP one. The first one lies on the fact
that in an IZ neuron, between the silent state and the
emission of a spike, there is not the symmetry which
characterises the states 0 and 1 of the binary MCP
neuron; in addition, there is also an asymmetry of the
excitatory or inhibitory synaptic influences. The second
property lies on the existence of a latency before the
emission of a spike, when an excitatory input is strong
enough to elicit it in an IZ neuron. This latency depends
on the intensity of the excitation and on the presence or
not of some inhibition.



The IZ neuron model we consider here is described in
[5]. It captures some properties of realistic HH type
conductance-based models with biological plausibility
and has an interesting simplicity of hardware
implementation. In this model, the potential of each unit
is given by a two-dimensional system of ordinary
differential equations.

() Here a first time scale is directly related to numerical
computation. It is based on the integration time step
related to the differential equations modeling the
dynamics of the membrane potential of the I1Z neuron.
This integration time is set with respect to the time
constants appearing in these differential equations; it
defines the degree of precision of the membrane
potential computation: the smaller this integration time
step, the higher the precision. The computational time
depends on it: the smaller this integration step, the
slower the simulation. Therefore, when defining the
integration time step, it is necessary to take into account
the computational power of the machine, in order to get
simulations within reasonable time duration. As it was
described in the MCP model for At, it is possible to
attribute a unitary value to the elementary computation
time, 8t, during which the computation of the value of
the membrane potential of each neuron in the network
is performed. At each instant ¢ ending an elementary
time step Ot, we can associate a potential state of the

network by defining a real vector v (t) , each coordinate

of which corresponds to the instantaneous value of the
membrane potential of one of the neurons, value
belonging to the interval [-80mV, +30mV] typically. A
binary vector representing the state of the neurons at ¢,

E(t) , can be easily deduced from \7(1), by giving
value 1 to the neurons whose membrane potential is

equal to 30mV and 0 otherwise. At time (z+1), \7(t + 1)
and E(t+ 1) can be computed as well, but if the i”

coordinate of E(t), i.e. the state of neuron i, is 1, it

can’t be 1 again at (++1), but must be 0. This rule is true
for the state of neuron i until ¢’, such as (¢’-7) is greater
than the absolute refractory period, T,, of the neuron
model. This rule about the possible states of the 1Z
neurons along successive instants of this computational
clock differs essentially from the rule driving the
neuronal binary states along successive instants of the
MCP network intrinsic clock. Therefore, if we want to
compare the neural dynamics in both types of neural
networks, we can’t rely on equivalence between these
two clocks, in other words: between 8t and At.
Moreover, the integration time step at the basis of 0t is
typically one or two order of magnitude smaller than
the refractory period 7,, which could be compared to
what represents At, the time step between two
successive updates in the MCP network.

(IT) Because of the very different intrinsic
computational clocks involved in IZ and MCP
simulations, we can not expect to get the same activity

in the two types of network. For instance, when taking
the connection matrix, the delay matrix and the input
vector from a MCP network showing a “distributed
synchrony” to implement a network of IZ neurones, this
IZ network exhibits a very different spatio-temporal
pattern: there is no distributed synchrony, but a quite
regular activity of all the neurones excited by the input.
Thus, in order to get the same pattern in both networks,
we have to define an explicit temporal grid for the
update rule in the 1Z network. This grid is an extrinsic
clock which structures the dynamics. The time step Aty
associated with this new clock is typically of the order
of magnitude of 7.

On one hand, the time step Aty is defined according to
some constraints: (i) At is larger than 7, in order to
insure a possible attribution of the value 1 for any
neuron at two successive beats of the new clock, and,
moreover, (ii) At;; must be large enough in order to
erase any ‘memory’ of the state of the neuron between
two beats, which means that the membrane potential of
every neuron that has emitted a spike at a given beat has
been reset to its resting value before the next beat.

On the other hand, in the MCP network, the information
about the synaptic state of the network is available at
each beat of the intrinsic clock, this means that a
synapse with unit delay is active at time ¢ as soon as its
pre-synaptic neuron was in state 1 at time (z-1).
Accordingly, in the IZ network, it is the time step, At,
of the extrinsic clock which figures the smallest
synaptic transmission time. If different synaptic delays
are taken into account, they are multiple of At;z.

For each neurone, its synaptic balance is the algebraic
sum of external (input) and internal (network) synaptic
weights: it is introduced as an applied current / in one of
the two combined differential equations computing the
membrane potential V' of the IZ neurons. In order to get
exactly the same dynamics in both models when they
are implemented with the same architecture, we apply to
I the rule of the MCP. It means that / is a Heaviside
function of the synaptic balance at each “update” time
which will be defined now. According to a pulse train
function f defined by pulses of width ¢,, occurring at
period Aty at each pulse [ is given either a saturation
value Iy, if the synaptic balance is positive or a nil
value. Thus 7 realizes a kind of digital/analogic
converter, on the basis of the temporal grid f. I, and
t,, are set in order to get a perfect bijection between the
binary values of 7 { 0, Iy, }, and the absence or presence
of a single spike in the post-synaptic neuron. In
addition, when the period Aty is defined as described
above, we get the bijection at each “update” time, i.e at
each beat of the clock set by f. For instance, /=0,
t,=506t, and At;; =1000¢ are convenient when the
differential equations defining the IZ neurones are the

following:

By setting/ to a saturation value for all neurones
whose synaptic balance is positive at a given beat of
this clock, we get quite a good synchronization of their
spikes. Then, at a given update time, the internal part of
the synaptic balances is computed from the neurones
that have emitted spikes during fixed time windows

o}



around the previous update times, phase locked to the
pulse train, with a width exceeding #,, considering their
contribution according to the delay matrix.

(IIT) With the extrinsic clock defined above, the spatio-
temporal pattern exhibited by the spikes in the 1Z
network is exactly the same as the activity map of the
binary MCP neurons. Therefore, it is also possible to
get a quasi-periodic activity in a network of IZ neurons
when its architecture induces it in the network of MCP
ones, with the corresponding emergence of an internal
clock whose characteristic time is 7, same multiple of

Atyr, as it is of At.

Conclusion

We have shown that the neural dynamics due to the
architectural properties of a neural network can be
complex enough in order to get the co-emergence of
both an internal clock and a possible spatio-temporal
code: this is what can be proven when such an
architecture is implemented in an MCP network, where
the units are deprived of individual dynamical
properties. We describe here how the introduction of an
appropriate temporal grid (an extrinsic clock) in
simulations of a IZ network allows this one to exhibit
the same dynamics as the one of an MCP network,
provided that both networks are build according to the
same architecture. Therefore, it is possible to consider
the extrinsic clock imposed to the I1Z network as a tool
which allows to isolate the dynamical impact of the
network properties from that of the individual
dynamical properties of the continuous time IZ neurons.
This also validates the pertinence of MCP networks as
auxiliary models to study the neural dynamics in the
biological systems.

Conversely, now that we know how to define temporal
constraints in the network of IZ neurons in order to get
exactly the activity of their equivalent MCP neurons,
we can imagine to relax these constraints and to define,
at the level of the MCP neurons this time, new rules in
order to keep a dynamical equivalence between these
two types of network. Typically, the new rules may act
at the level of the asynchrony of the neuronal update,
which could be a way of introducing elements of
continuous time neuron dynamics in an MCP neural
network, in addition to its architectural properties.
Then, we aim at introducing, combined with the neural
network, a network of synapses, as transmitting objects
modeling the dynamical behaviour of biological
synapses.
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