

# An experimental design based strategy to optimize a capillary electrophoresis method for the separation of 19 polycyclic aromatic hydrocarbons

L. Ferey<sup>1,2,3</sup>, N. Delaunay<sup>1</sup>, D. N. Rutledge<sup>2</sup>, A. Huertas<sup>4</sup>, Y. Raoul<sup>3</sup>, P. Gareil<sup>1</sup>, I. Rivals<sup>5</sup>, J. Vial<sup>1</sup>

<sup>1</sup>Laboratory of Physicochemistry of Electrolytes, Colloids and Analytical Sciences (PECSA), UMR 7195 CNRS/ESPCI/UPMC <sup>2</sup>Equipe Ingénierie Analytique pour la Qualité des Aliments (IAQA), UMR1145 AgroParisTech/INRA <sup>3</sup>Sofiprotéol <sup>4</sup>Lesieur <sup>5</sup>Equipe de Statistique Appliquée, ESPCI ParisTech



**Research project:** 

 development and optimisation of PAH analysis in CE using Laser-Induced Fluorescence detection (LIF)







## **Introduction: CD-CZE**

**CD-CZE** analysis of PAHs:

- Dual CD system: 1 neutral CD (Me-β-CD) + 1 anionic CD (SBE-β-CD)
- Separation mecanism: PAHs differential partitioning between the two CDs

high selectivity

Best results found with an univariate method (one-variable-at-a-time):

\* 10 mM sodium borate buffer (pH 9.2), 600 mM urea, 10 mM SBE-β-CD, 20 mM Me-β-CD in 9:1 (v/v) water-methanol mixture

✤ electrophoretic separation of 16 PAHs in 15 min with R<sub>s</sub>> 1.8



## **COST versus multivariate approaches**

COST approach: Change One Separate factor at a Time

## 8

High number of experiments Local and not global optimum

Interactions not studied

**Isolated experiments** 

No mapping of experimental domain

Design of experiments How? Simultaneous variations of factors (matrix of experiments)

#### $\odot$

Determination of factors effects and interactions on responses

Response surfaces graphically represented

**Global optimum achieved** 



**Chimiométrie – 6 décembre 2012** 



Identification of the factors most influencing the PAH electrophoretic behavior:

- [SBE-β-CD]
- [Me-β-CD]
- % MeOH

Impact on the selectivity, BGE viscosity – and ionic strength (for [SBE-β-CD] only), and PAH solubility

Factors maintained constant:

[borate] = 10 mM and [urea] = 600 mM (high concentration to assure PAH solubility) in BGE

Temperature 25°C and  $\Delta V = 14$  kV (no joule effect)

Bare fused-silica capillaries 50 μm I.D. x 49 cm (LIF detection at 33.5 cm)



#### **Central composite design with 3 factors:**



**Combination of:** 

- one two-level full factorial design (8 vertice points)
- a star design (6 axis points)
- 6 center points to evaluate experimental error

**20 experiments** 



### **Determined from preliminary experiments:**

## • 5 mM $\leq$ [SBE- $\beta$ -CD] $\leq$ 15 mM

✤ 5 mM: to assure enough selectivity and preserve PAH solubility in sample & BGE for (-1,-1,-1), (-1,6,0,0) and (0,0,-1,6)

**→** 15 mM: to keep analysis time < 45 min for (+1,6,0,0), (0,0,+1,6) and (+1,-1,+1)

## • 5 mM $\leq$ [Me- $\beta$ -CD] $\leq$ 40 mM

✤ 5 mM: to preserve PAH solubility in sample & BGE

♦ 40 mM: to limit BGE viscosity

#### ● 10 % ≤ % MeOH ≤ 25 %

✤ 10 %: to avoid repeatability problems due to possible evaporation, and preserve PAH solubility in sample & BGE for (0,0,-1,6), (-1,-1,-1) and (-1,6,0,0)

◆ 25 %: to prevent CD precipitation for (0,0,+1,6) and (+1,+1,+1) and keep
 analysis time < 45 min for (+1,6,0,0), (0,0,+1,6) and (+1,-1,+1)</p>

To study PAH electrophoretic behavior:

Image and the migration times normalized by the EOF migration time

To study the quality of the separation (selectivity):

inversion in selectivity:



→ -resolution: differences of normalized migration times between peak start and peak end of two consecutive peaks  $(t_{startPAH2}-t_{endPAH1})$ 

To study analysis time:

migration time of the last peak



Estimation of model coefficients for PAH normalized migration times

**To identify factors most influencing PAH electrophoretic behavior** 



Regression coefficients plot representing main, nonlinear, and interaction effects of factors on BaP normalized migration time.

# Effects of factors on PAH migration (2/2)

Same work on other PAH normalized migration times:

## significant:

- •[SBE-β-CD]: positive effect
- •[Me-β-CD]: negative effect
- •[Me-β-CD]<sup>2</sup> choice of a second-order polynomial quadratic modeling relevant

## sometimes significant:

- •%MeOH (3/19)
- [SBE-β-CD] x [Me-β-CD] (4/19)
- [Me-β-CD] x %MeOH (4/19)

never significant:
 [SBE-β-CD]<sup>2</sup>
 %MeOH<sup>2</sup>
 [SBE-β-CD] x %MeOH

**DOE** data exploitation: two objectives (1/2)

## Separation optimization of two PAH mixtures in CE:

1) 8 PAHs of food and environmental interest since belonging to the 2 lists of pollutants (US-EPA + EFSA)



Chimiométrie – 6 décembre 2012

**DOE data exploitation: two objectives (2/2)** 

2) 19 PAHs currently under regulation demonstration of the selectivity of the method (PAHs can be found as interferents in complexe mixtures)

- Reversal in migration order new optimization strategy: systematic approach using Matlab software
- Second-order polynomial quadratic model
  response surfaces of normalized migration times of peak start and peak end of all 19 peaks

$$\eta \left( X_{1 \leq i \leq 3} \right) = \sum_{i=1}^{3} \beta_{i} X_{i} + \sum_{i=1}^{3} \beta_{ii} X_{i}^{2} + \sum_{i=2}^{3} \sum_{j=1}^{i-1} \beta_{ij} X_{i} X_{j}$$



• Differences of normalized migration times between all the couples of peaks were computed  $\longrightarrow$  cubes corresponding to overlapping peaks discarded: 171 conditions for which  $t_{startPAHj}/teo - t_{endPAHi}/teo > 0$ 

## **19 PAHs: separation optimization (2/2)**

• For retained experimental conditions: desirability analysis on minimum interval between two consecutive peaks and global analysis time



Representation of experimental points and those predicted by the model

- A) Predicted absurd points in blue and DOE experimental points in white
- B) Predicted smallest interval for retained conditions: optimum points in dark green
- C) Predicted analysis time for retained conditions: optimum points in dark green

Aim: maximum PAH separation in a minimum analysis time

Multicriteria optimization - Use of desirability functions

Desirability functions: each response transformed on a scale between 0 (the most undesirable outcome) and 1(the most desirable situation)

di: individual desirability (one for each response)



## **Experimental Validation**



Bare fused-silica capillary, 50 μm I.D. x 49 cm (LIF detection at 33.5 cm). BGE: 10 mM sodium borate buffer (pH 9.2), 600 mM urea, 9.4 mM SBE-β-CD, and 12.0 mM Me-β-CD in 88.8 % /11.2 % (v/v) water-MeOH mixture. Temperature, 25°C. Applied voltage, 14 kV. Excitation: 325 nm, emission: 350 nm. Sample: PAHs at about 100 μg/L in 10 % ACN / 90 % electrolyte. IS: umbelliferone

### **Tests around the predicted optimum**

Sest conditions found: (-0,2; -0,8; -1,4) > 9.4 mM SBE-β-CD; 14.1 mM Meβ-CD and 11.2 % MeOH



Bare fused-silica capillary, 50 μm I.D. x 49 cm (LIF detection at 33.5 cm). BGE: 10 mM sodium borate buffer (pH 9.2), 600 mM urea, 9.4 mM SBE-β-CD, and 14.1 mM Me-β-CD in 88.8 % /11.2 % (v/v) water-MeOH mixture. Temperature, 25°C. Applied voltage, 14 kV. Excitation: 325 nm, emission: 350 nm. Sample: PAHs at about 100 µg/L in 10 % ACN / 90 % electrolyte. IS: umbelliferone

## **Voltage optimization**

Test of Joule effect inscrease in voltage from 14 kV to 17 kV decrease in analysis time from 20 min to 13 min



Bare fused-silica capillary, 50 μm I.D. x 49 cm (LIF detection at 33.5 cm). BGE: 10 mM sodium borate buffer (pH 9.2), 600 mM urea, 9.4 mM SBE-β-CD, and 14.1 mM Me-β-CD in 88.8 % /11.2 % (v/v) water-MeOH mixture. Temperature, 25°C. Applied voltage, 17 kV. Excitation: 325 nm, emission: 350 nm. Sample: PAHs in 10 % ACN / 90 % electrolyte. PAH concentration: DBahP 30 ppb, IS 37 ppb (umbelliferone), ANT 192 ppb, DBahA 29 ppb, ACP 1.8 ppm, PHE 1.25 ppm, CHR 48 ppb, BaA 58 ppb, MCH 54 ppb, BkFA 19 ppb, DBaiP 44 ppb, FA 78 ppb, BaP 58 ppb, Pyr 13 ppb, BjFA 115 ppb, BbFA 29 ppb, IP 317 ppb, DBalP 77 ppb, BghiP 77 ppb, DBaeP 77 ppb.



2 CE methods for the separation of PAHs were optimized using a design of experiments

✤ The most studied 8 PAHs baseline resolved in less than 8 min

✤ 19 PAHs under regulation baseline resolved in less than 13 min with Rs > 1.3

Experimental designs: efficient tool for the optimization of separation methods

Futur objectives

Robustness evaluation using another multivariate approach (screening designs)

Quantitative validation on real food samples (edible oils)



# Thank you for your attention.

