

Isabelle RIVALS¹, Vincent CUZUEL², Guillaume COGNON², Roman Lecon <u>Didier THIEBAUT</u>³, Charles SAULEAU², Jérôme VIAL³

Équipe de Statistique Appliquée, UMRS 1158, ESPCI Paris, France nstitut de Recherche Criminelle de la Gendarmerie Nationale, Cergy-Pontoise, France JMR CBI 8231 - Laboratoire Sciences Analytiques, Bioanalytiques et Miniaturisation – ESPCI Paris – PSL Research University

*** île**de

CONTEXT

Popularization of the echniques used by the police

Criminals are more attentive and cautious!

GCxGC-ISCC Riva del garda 2018

Human odor

.

Probative value to evidence in courts of justice

Use of trained dogs

Sufficient for identification of a person

Limited probative value in courts of justice

Need for corroborative evidence by analytical tools:

OBJECTIVES

evelop a global strategy to characterize the olfactory ngerprints of individuals using **analytical and statistical tools**

- Volatile compounds at trace levels: preconcentration step required
- **Complex mixtures**: multidimensional separation (GC×GC-MS)
- Question to be answered
- Is the comparison of an "odor" reference chromatogram to a chromatogram obtained using an odor sample from a suspect (crime scene...) sufficient to prove that the odor belongs to the same person?

GLOBAL STRATEGY

PRECONCENTRATION AND ANALYSIS: PURGE AND TRAP - GCxGC

1- Cuzuel et al., A review: Origin, analytical characterization and use of human hands odor in forensics, 2017, Journal of Forensic Sciences

CHROMATOGRAM OF A REAL SAMPLE

1st dimension: DB1-MS (apolar)

COMPARISON OF REAL SAMPLES?

leed for an automated data processing to extract relevant information leed for a panel of persons to evaluate the strategy

CHROMATOGRAMS OF REAL SAMPLES: PANEL

Panel of 119 persons

	gender		age (years)			phototype		
total	പ	우	10-23	24-36	37-81	1	2	3
119	61	58	39	39	41	25	79	15

- Phototype 1 skin is sun sensitive and does not burn
- Phototype 2 intermediate skin
- Phototype 3 well tanning skin
- 4 direct samplings of hands/person (Sorb-star[®])
 - 15 minutes
 - Blank (sampling room)
- TD* GC×GC-MS**
- 3 chromatograms/person

et al., Sampling method development and optimization in view of human hand odor analysis by thermal desorption coupled with gas chromatography and mass spectrometry, 2017, Anal. Bioanal. Chem. I et al., Human odor and forensics. Optimization of a comprehensive gas chromatography method based on orthogonality: how not to choose between criteria., 2017, Journal of Chromatography A GCxGC-ISCC Riva del garda 2018

DATA PROCESSING / BAYESIAN APPROAC

hromatogram 🛑 1 vector corresponding to 600 compounds peak intens

* Cuzuel et al., Origin, analytical characterization and use of human odor in forensics, 2017, J. Forensic Sci.

BAYESIAN APPROACH (A POSTERIORI)

- : the two chromatograms are obtained from the same person : the two chromatograms are NOT obtained from the same person
- represent the observed data (the two chromatograms), Bayes formula gives :

$$P(H_0 | D) = \frac{f(D | H_0)P(H_0)}{f(D | H_0)P(H_0) + f(D | H_1)P(H_1)}$$

- otocole:
- Definition of a **distance** d between 2 chromatograms (D = d)
- anel of chromatograms of individuals (119 persons sampled 4 times) splitted in ependent calibration and test groups
- alibration group → estimation of **distributions of** *d* **for couples of chromatograms fron** ne person f(d|H₀) and from different persons f(d|H₁)
- est group -> estimation of performance (AUC, sensitivity, spécificity)

BAYESIAN APPROACH: CHOICE OF DISTANCE BETWEEN CHROM

Estimation of the statistical likelihood

Options :

d : distances between 600-vectors of intensities :

- a) euclidian distance
- b) 1 Pearson correlation coefficient
- c) 1 Spearman correlation coefficient
- intensities normalized / binarized (b=c)

Calibration group (260 chromatograms / 75 persons)

- 341 couples of chromatograms for H_0 (same person)
- 33 329 couples de chromatograms for H₁ (différent persons)
- histograms of d values for H₀ and H₁

Ajustment of histograms using several gaussian curves → f(d|H₀) and f(d|H₁)

BAYESIAN APPROACH: EXPECTED RESULTS

- Probabilities *a priori* : $P(H_0) = P(H_1) = 0.5$ $P(H_0 | d) = \frac{f(d | H_0)P(H_0)}{f(d | H_0)P(H_0) + f(d | H_1)P(H_0)}$
- Fictitious examples of statistical likelihood

BAYESIAN APPROACH: RESULTS USING 600 COMPOUNDS

(%AUC calibration / %AUC test)

distance intensities	euclidian	$1 - \rho_{Pearson}$	$\textbf{1}-\rho_{\text{Spearman}}$	
normalized	62.7% / 64.6%	74.6% / 74.7%	92.4% / 93.6%	
binarized	88.4% / 91.6%	89.6% / 91.7%		

2 modes!

N.B. using the test group, there are 173 / 9 418 couples for H_0 / H_1 respectively GCxGC-ISCC Riva del garda 2018

BAYESIAN APPROACH: DISCRIMINATING COMPOUNDS

- Discriminating compounds for H_0 and H_1 : those which intensity differences | Δi | are significantly lower for H_0 than H_1
- Quantification : *p*-value using unilateral Fisher test (binarized intensities) or Wilcoxon (normalized intensities) on $|\Delta i|$
- Examples :

BAYESIAN APPROACH: RESULTS USING DISCRIMINATING

(%AUC calibration / %AUC test)

BAYESIAN APPROACH: RESULTS USING DISCRIMINATING COMPOUNDS

(%AUC calibration / %AUC test)

• Threshold π value $-\log_{10}(p)$ of Fisher test (binarized intensities) or Wilcoxon (normalized intensities) : optimized value obtained using cross validation (K=3) on calibration group

distance intensities	euclidian	$1 - \rho_{Pearson}$	$\textbf{1} - \rho_{\text{Spearman}}$	
normalized	π = 12 / 61 comp. 76.2% / 73.9%	π = 13 / 54 comp. 78.1% / 75.2%	π = 7 / 146 comp. 97.5% / 98.2%	
binarized	π = 18 / 82 comp. 93.1% / 94.8%	π = 18 / 8 97.4% /	•	

Discussion

(%AUC calibration / %AUC test)

rformances

intensities	AUC	sensitivity	specificity	nb. compounds
binarized	97.4% / 98.1 %	89.4% / 90.0%	94.9% / 92.5%	82
normalized	97.5% / 98.2 %	89.1% / 85.9%	93.7% / 95.0%	146

Adequate distance ightarrow quantitative exploitation of compounds intensities despite th alytical variability

Selection → second modes of f(d|H₀) et f(d|H₁) are strongly decreased → better result Binarized : more parsimonious (82/146 compounds to be used)

57 common compounds for both classifiers

ota bene

- ame direct samples
- no pollution by other odors

- Direct/non direct sampling procedures for human (hand) odor analys Comprehensive GC×GC-MS method and data (ToF)
- /alidation of procedures in the field with dog handlers
- arge Panel of individuals to test the model
- Storage of samples: standardized procedure
- Data processing in progress for real application
- Different samples (direct or not...) and sampling conditions
- Study of discriminating compounds
- Normalization on discriminating compounds, more complex distance...

The final answer to the question must be YES or NO not 98.2%

ACKNOWLEDGEMENTS

THANK YOU FOR YOUR ATTENTION!