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Abstract
The issue of distinguishing between the same- source and different- source hypoth-
eses based on various types of traces is a generic problem in forensic science. This 
problem is often tackled with Bayesian approaches, which are able to provide a likeli-
hood ratio that quantifies the relative strengths of evidence supporting each of the 
two competing hypotheses. Here, we focus on distance- based approaches, whose 
robustness and specifically whose capacity to deal with high- dimensional evidence 
are very different, and need to be evaluated and optimized. A unified framework for 
direct methods based on estimating the likelihoods of the distance between traces 
under each of the two competing hypotheses, and indirect methods using logistic 
regression to discriminate between same- source and different- source distance distri-
butions, is presented. Whilst direct methods are more flexible, indirect methods are 
more robust and quite natural in machine learning. Moreover, indirect methods also 
enable the use of a vectorial distance, thus preventing the severe information loss 
suffered by scalar distance approaches. Direct and indirect methods are compared 
in terms of sensitivity, specificity, and robustness, with and without dimensionality 
reduction, with and without feature selection, on the example of hand odor profiles, 
a novel and challenging type of evidence in the field of forensics. Empirical evalua-
tions on a large panel of 534 subjects and their 1690 odor traces show the significant 
superiority of the indirect methods, especially without dimensionality reduction, be it 
with or without feature selection.
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Highlights

• Direct and indirect distance- based likelihood ratio estimation methods for forensic compari-
son are investigated.

• These methods are applied to high- dimensional evidence consisting of hand odor traces.
• The methods’ robustness, sensitivity and specificity are evaluated on a panel of 534 subjects.
• Indirect methods based on logistic regression outperform direct ones and are more robust.
• The indirect method using a vectorial distance outperforms that using a scalar one, both with 

and without feature selection
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1  |  INTRODUC TION

A generic problem in courts of law is to decide whether a trace of 
an unknown origin, often drawn from a crime scene, and a specimen 
from a known source, stem from the same source, for example, a 
person or a firearm. If the source is a person, the traces might be 
biometric such as a DNA profile (1- 2), fingerprints (3), a voice (4), an 
olfactory profile (5), or they might consist of footwear impressions 
(6), handwriting (7), etc. If the source is a firearm, the traces may 
be features such as striations and impressions on a bullet or on a 
cartridge case (8).

The most common approach of forensic science to this problem is 
to estimate a likelihood ratio (LR), i.e., the ratio of the joint probability 
of occurrence of the two traces under the hypothesis that they arose 
from the same source and under the hypothesis that they arose from 
different sources. A convenient solution is to replace the joint prob-
ability of the traces by the probability of a distance between the two 
traces quantifying their dissimilarity (6, 9– 14,). If, as is most often the 
case, the distance is scalar, there is an important loss of information. 
Thus, we choose to focus on distance- based methods, but with the 
possibility to use a vectorial distance between traces.

Furthermore, the distance- based LR estimate can be obtained 
either directly, by estimating the distance likelihoods under the two 
hypotheses, or indirectly, by first using logistic regression to discrimi-
nate between same- source and different- source distance distributions, 
and then Bayes’ formula to infer the LR. Though the direct method is 
more flexible, the indirect method is more robust and quite natural in 
machine learning (15- 16). It is sometimes advocated for in the forensic 
context, for the same reasons and also because it enables score calibra-
tion and fusion with minimal mathematical complexity (17- 18). Here, 
we show that the indirect method also allows the use of a vectorial 
distance, thus preventing the severe information loss suffered by sca-
lar distance approaches. We discuss the direct and indirect methods in 
terms of robustness and ability to handle high dimensional evidence, 
with or without dimensionality reduction, and with or without feature 
selection. We evaluate them in terms of sensitivity, specificity, and ro-
bustness on the example of traces consisting of a hand odor profile.

2  |  MATERIAL S AND METHODS

2.1  |  Problem statement

The aim is, given the evidence consisting of a pair of traces (e.g., two 
olfactory profiles), to decide whether these traces have the same 
source (e.g., the same person) or not. In the following, Hss refers 
to the hypothesis that the two traces stem from the same source, 
and Hds to the alternative hypothesis that they stem from different 
sources. Given the a priori probabilities P(Hss) and P(Hds), the Bayesian 
formula yields the posterior probability of Hss given the evidence E:

where f(E|Hss) and f(E|Hds) are the distributions of the evidence under 
Hss and Hds, or likelihoods. Jeffreys developed an absolute scale to 
evaluate the degree of confidence in the same- source hypothesis out-
side a decisional framework based on the posterior probability of Hss 
using the LR (19- 20) defined as:

which is independent of the a priori probabilities. In fact, the ob-
served evidence E consists of the two traces, which are represented 
by n- dimensional vectors (whose components are the amounts of each 
odor compound). As we focus on distance- based methods, the infor-
mation contained in these two vectors is transformed into a distance 
or dissimilarity measure, which can be either a scalar or an n- vector (a 
distance for each feature of the trace, here for each odor compound). 
In the following sections, this distance between the two traces will be 
denoted by d.

2.2  |  Candidate methods

The LR can be obtained either directly, i.e., by estimating the likeli-
hoods of the distance under the two competing hypotheses, or in-
directly, i.e., using first logistic regression to discriminate between 
same- source and different- source distance distributions, and then 
formulas (1) and (2) to infer the LR.

2.2.1  |  Direct methods

For direct methods, we need to be able to evaluate f(d|Hss) and 
f(d|Hds) for any value of d. For this purpose, part of the available 
dataset can be used to build pairs of traces of the two types: same- 
source and different- source pairs. If d is scalar, or of dimension 2 or 3 
at most, the two empirical distributions can be fitted, with Gaussian 
mixtures, for example, leading to parametric estimates of f(d|Hss) 
and f(d|Hds) (8, 10, 13). In the case of many features, a fit of each 
component of d can be performed in the same way, and the overall 
likelihoods can be approximated through the product of the likeli-
hoods in each dimension, leading to the naive Bayes classifier. To be 
successful, the latter approach requires however that the features 
are not overly correlated.

2.2.2  |  Indirect methods

The aim of these method is to build a discriminative model of the 
boundary between the two categories of pairs (same- source and 
different- source pairs) rather than a generative model explicitly 
parameterizing the distributions in the two categories. It is well 
known that, under the hypothesis of single- Gaussian distributions 
with the same variance under Hss and Hds in the scalar case, or same 

(1)P(Hss |E) =
f(E |Hss)P(Hss)

f(E |Hss)P(Hss) + f(E |Hds)P(Hds)

(2)LR(E) =
f(E |Hss)

f(E |Hds)
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covariance matrix in the multidimensional case, the posterior prob-
ability of Hss takes the form of a sigmoidal curve (15- 16), hence the 
motivation for a logistic regression approach. Despite its result being 
a discriminative model, it enables to calculate the posterior prob-
ability of Equation (1) as well as the LR of Equation (2). As a matter 
of fact, the logistic regression model with parameters θ = [aT b]T has 
output:

where b is a scalar, and a is either a scalar in the case of a scalar dis-
tance, or otherwise an n- vector (of the dimension of the evidence). If 
the proportions of the same- source and different- source categories in 
the calibration set are denoted by fss and fds, r(d, θ) approximates:

Thus, the posterior probability for a priori probabilities P(Hss) and 
P(Hds) can be retrieved with:

and the likelihood ratio with:

2.3  |  Pros and cons

The indirect method offers several advantages:

• it spares the necessity to fit the likelihoods,
• in the multi- dimensional case, contrary to the naive Bayes classi-

fier, the independence assumption is not necessary, because the 
logistic regression automatically takes care of the correlation be-
tween features,

• by construction, the log LR is defined by a hyperplane, and thus 
robust with respect to the equal variance assumption, as well as 
to outliers or sparse data far from the boundary,

• in the forensic context, because the log LR is directly proportional 
to aT d + b, the logistic allows a convenient and interpretable cal-
ibration of the dissimilarity score d, and a fusion of scores in the 
multidimensional case (18).

On the other hand, the indirect method might suffer from:

• a reduced flexibility because it amounts to assuming single- 
Gaussian distributions,

• a possibly important computation time in the case of high- 
dimensional evidence and of a distance of the same dimension.

These advantages and disadvantages will be examined and dis-
cussed on the example of hand odor evidence using a large panel of 
subjects.

2.4  |  Dataset description

A panel of 534 volunteers was set up which gathers 218 men and 
316 women aged 7– 94 years (median 28, interquartile interval 
[22; 48]), see Table 1 for the detailed composition in terms of 
gender and age. Note that this composition does not aim at re-
flecting that of a precise target population, such as one which 
is more likely to commit a crime, but to be as representative of 
the diversity of odors as possible. As a matter of fact, criminal 
investigations also often necessitate to look for victims, or to 
discriminate between traces from different people present at a 
crime scene, including those of victims or witnesses, who might 
be women as well as men, children or seniors as well as middle- 
aged adults. All data were completely anonymized prior to analy-
sis, and no personal information was stored.

The goal was here to identify the subjects by their hand odor, 
whose volatile profile was shown to display a between- subject vari-
ability which is sufficient for differentiation (21, 5). Also, in the fo-
rensic context, the hands have the advantage to be more likely to be 
directly in contact with objects at a crime scene, and to be easier to 
sample during a police interrogation.

The volatile profiles were obtained by a direct sampling pro-
cedure using identical sample collection kits of four small polymer 
strands that the subjects were asked to rub together in their hands 
for 15 minutes. The polymer strands were thermodesorbed, and 
the concentrated substances were separated by comprehensive 
bidimensional gas chromatography (GCxGC) coupled with mass 
spectrometry (MS). The sampling method and the optimization of 
the GCxGC- MS analysis were extensively described in (22- 23). 
Data were acquired, converted to .mzXML files with GC Real Time 
Analysis 4.20 (Shimadzu software), and then processed with Matlab 
(Natick, MA, USA) version 9.6.0.1150989 (R2019a), its Statistics 
and Machine Learning Toolbox version 11.5 and its Bioinformatics 
Toolbox version 4.12.

Using a “home- made” Matlab script (24), the preliminary manual 
processing of 25 chromatograms obtained on three subjects between 
23 and 26 years old of both genders sampled several times at different 

(3)r(d, !) =
1

1 + exp( − (aTd + b))

(4)
f(d |Hss)fss

f(d |Hss)fss + f(d |Hds)fds

(5)
̂P(Hss|d) =

1

1 + exp( − (aTd + b))
fss
fds

P(Hds)

P(Hss)

(6)L̂R(d) = exp(aTd + b)
fds
fss

TA B L E  1  Panel composition in terms of gender and age

Gender

Age (years)

7– 
17 18– 64 65– 94 Total

Man 18 182 18 218

Woman 28 268 20 316

Total 46 450 38 534
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time instants enabled us to draw up a first list of several hundreds of 
peaks. A library was built to store their retention times, their linear re-
tention index, their mass spectrum, and the name of the corresponding 
compound when it could be identified using the NIST library. Indeed, 
if the availability of its mass spectrum is compulsory, a compound 
does not need to be formally identified for the comparison of chro-
matograms. We also checked whether compounds described in the 
literature as constituents of the human hand odor were present in this 
library, otherwise they were included. The library was then continu-
ously enriched as the panel was increased with compounds potentially 
relevant to human hand odor because of their empirical frequency in 
new samples. This work led us to a customized library of 741 com-
pounds, which were looked for in each chromatogram. As a result, each 
sample was characterized by the peak areas of 741 compounds.

To compensate for uncontrolled variations of the total area of the 
chromatograms, the sum of these areas was normalized in logarithmic 
scale to unit value, see Table 2 for a comparison of the reproducibil-
ity of the data without normalization, and normalization in scalar and 
logarithmic scales. Not knowing whether all 741 compounds are really 
relevant for identification, such a normalization across all compounds 
might be questionable. Thus, the possibility to avoid the problem by 
working on the dichotomized areas, i.e., 1 if the compound is present, 
or 0 if it is absent from the sample, was also investigated. Also, this 
approach might be of interest for forensic identification problems deal-
ing with intrinsically binary features, such as gradient, structural, and 
concavity (GSC) binary features in handwriting identification (25). In 
the following, we refer to these traces of 741 features, continuous or 
dichotomized, as "odor traces."

As stated earlier, the subjects were sampled in quadruplicate, but 
due to unavoidable mishaps with some samples (such as accidently 
dropping a polymer on the floor during sampling) and to chromato-
graphic problems (such as failures of the cryogenic modulator), 1690 
odor traces were obtained for the 534 subjects (44 were sampled once, 
77 twice, 160 three times, and the remaining 253 subjects four times, 
leading to an average of 3.2 odor traces per subject). This data set was 
split into a calibration set for training and validation, and an indepen-
dent test set for performance estimation. Since gender (26) and age (27) 
are known to impact odor traces, the split was made so as to respect 
the gender proportions, with subject of all ages in the two sets, and 
odor traces of the same subject being put in the same set. As a result, 
the calibration set comprises 412 subjects and their 1,299 odor traces 
(corresponding to 1,594 Hss and 841,457 Hds pairs), and the test set 

comprises the remaining 122 subjects and their 391 odor traces (lead-
ing to 481 Hss and 75,764 Hds pairs). The way the odor traces distribute 
between calibration and test set can be grasped through the Principal 
Component Analysis (PCA) of Figure 1.

2.5  |  Implementation

Three methods were implemented:
1) the direct method using a scalar distance between odor traces,
2) the indirect method using a scalar distance between odor 

traces,
3) the indirect method using a vectorial distance, i.e., a distance 

on each odor compound.
Note that, given the large dimension of the problem (n = 741) 

and the known correlations between features, we did not attempt to 
implement the direct method using a vectorial distance (i.e., a scalar 
distance on each feature and the naive Bayes classifier).

2.5.1  |  Distances between two odor traces

Let xi denote the n- vector representing odor trace i. A standard 
choice of scalar dissimilarity measure between odor traces i and j is 
the Euclidian distance between vectors xi and xj, i.e.:

But this distance is not robust with respect to shifts and linear 
transformations of the features. Thus, a more appropriate distance 
would be Pearson's linear correlation based distance:

However, Pearson's correlation is sensitive to nonlinearities, 
whereas Spearman's nonparametric correlation coefficient on the 
ranks is able to capture monotonic nonlinear associations as well 
as linear ones (28). Thus, the Spearman correlation- based dis-
tance (same as Equation (8) with the xi

k and xj
k replaced by their 

ranks) is expected to be more robust with respect to nonlinear 
variations of the peak areas. The three distances were compared 
in a previous study where Spearman's correlation- based distance 
clearly outperformed the two other distances (29). Therefore, the 
direct and indirect method using a scalar distance have been im-
plemented with Spearman's correlation- based distance.

The chosen vectorial distance for the indirect method using a 
vectorial distance is simply the vector of the absolute differences 
between feature values:

(7)dEudid(xi , xj) =

√√√√
n∑

k =1

(xk
i
− xk

j
)2

(8)dPearson(xi , xj) = 1 −

∑n
k =1 (x

k
i
− xi)(x

k
j
− xj)

√∑n
k =1 (x

k
i
− xi)

2
∑n

k =1 (x
k
j
− xj)

2

(9)dvectorial(xi , xj) = [
|||x

1
i
− x1

j

|||…
|||x

n
i
− xn

j

|||]
T

TA B L E  2  Repeatability of the odor trace features (peak 
areas), without and with two normalizations, estimated on the 
490 subjects sampled at least twice (IQI stands for interquartile 
interval)

Normalization
Median relative standard 
deviation [IQI] in %

None 61.0 [32.1; 78.0]

In scalar scale 56.1 [31.9; 74.2]

In logarithmic scale 33.2 [17.9; 48.8]
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2.5.2  |  Estimation of the likelihoods for the 
direct method

The calibration set was used to build pairs of odor traces of same and 
different sources, and to compute their distances. The empirical densi-
ties being essentially unimodal or bimodal (Figure 2), they were best fit-
ted with a two- Gaussian mixture distribution, using Matlab's function 
“fitgmdist,” leading to estimates of the likelihoods f(d|Hss) and f(d|Hds).

When performing feature selection (see section 2.5.5), the 
same- source and different- source distributions vary, depending 
on the subset of features. However, checking the optimality of the 
two- Gaussian mixture for all subsets of features during the feature 
selection process would be too time consuming. Nevertheless, the 
convergence of the fits was checked for, each fit being repeated 
three times with a different random set of initial parameters to 
retain the fit with the largest likelihood, and the optimality of the 
fit obtained with the selected number of features was tested. Of 
course, as stated in section 2.3, the necessity to fit the likelihoods 
and to optimize these fits, or to suffer suboptimal fits, is the first 
disadvantage of the direct method.

2.5.3  |  Estimation of the logistic model for the 
indirect methods

The logistic regression model of Equation (3) with parameters 
θ = [aT b]T was fitted through maximum likelihood, by minimizing 
the cross- entropy cost function with Matlab's function “glmfit”.

2.5.4  |  Likelihood ratio and performance estimation

For the direct method, the LR was evaluated using the estimates of 
the likelihoods f(d|Hss) and f(d|Hds) and Equation (2), as a function of 
the distance d. For the indirect methods, the LR was obtained from 
the fitted logistic regression and Equation (6), and plotted as a func-
tion of the distance d or of the score aT d + b, depending on d being 
scalar of vectorial.

As there is no true reference for the LR, the performance of 
the different methods was evaluated by estimating the posterior 

F I G U R E  1  PCA of the data set showing the distribution of 
the odor traces between calibration and test sets. The PCA was 
performed on the covariance matrix of the continuous features, 
i.e., normalized in logarithmic scale

F I G U R E  2  Results of the direct method with the scalar distance 
d on dichotomized feature, as functions of d, on the calibration set. 
a) Empirical distribution of d under Hss (1,594 pairs), and estimated 
density (mixture of 2 Gaussians). b) Empirical distribution of d under 
Hds (841,457pairs), and estimated density (mixture of 2 Gaussians). 
c) Posterior probability of Hss obtained using Bayes’ formula with 
equal priors. d) Likelihood ratio
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probability P(Hss|d) according to Equations (1) and (5) for the direct 
and indirect methods, respectively, and by performing a binary 
classification using equal prior probabilities [P(Hss) = P(Hds) =0.5]. 
Varying the decision threshold on P(Hss|d), the sensitivity and the 
specificity were estimated on the calibration and test sets, and used 
to compute the corresponding areas under the receiver operating 
characteristic “ROC” curve (AUC) (30). The performance was further 
characterized by the sensitivity, Sn, and specificity, Sp, maximizing 
Youden's index (31), i.e., Sn +Sp – 1.

2.5.5  |  Feature selection

In a previous study (29), improved results were obtained using fea-
ture selection. The idea is to retain the features that contribute the 
most to the difference between distance densities under Hss and Hds. 
Given the large number of features (odor compounds) and the large 
size of the data set, a filter approach to this selection was chosen. 
Filter approaches are based on a statistical measure of the differ-
ence between the two densities for each feature. They are hence 
independent from the main algorithm (direct or indirect method), as 
opposed to the so- called wrapper approaches, which sequentially 
evaluate the relevance of each feature subset based on the perfor-
mance of the whole procedure, i.e., feature selection together with 
main algorithm (32). As filter approaches consider the features in-
dependently, they might retain redundant features, but in turn this 
gives them more robustness and, most importantly, they require less 
computation time. For each feature, considering the absolute values 
of the differences for the Hss and Hds pairs, we chose Wilcoxon's 
nonparametric test statistic as statistical measure in the case of 
continuous features, and Fisher's exact test statistic in the case of 
dichotomized features. Then, the features were ranked in increas-
ing order of the one- sided p- value of the test, which is a one- sided 
test since smaller distances between features under Hss than under 
Hds are sought for. The number of features maximizing the AUC was 

estimated on the calibration set using 3- fold cross- validation. The 
cross- validation partitions were randomly chosen with the con-
straint that the odor traces of the same subject were put in the same 
partition. Note that cross- validation also enabled us to estimate the 
uncertainty on the AUCs through the mean standard deviation on 
the three partitions.

3  |  RESULTS AND DISCUSSION

The three methods are first evaluated using all the features of the 
odor traces (baseline comparison) and then, the possibility to further 
improve their performance using feature selection is investigated.

3.1  |  Baseline comparison of the three methods 
(without feature selection)

The results obtained with the three methods on the calibration 
and test sets are summarized in Tables 3 and 4 for dichotomized 
and continuous features, respectively. As a first remark, the per-
formance of the direct and indirect methods using a scalar dis-
tance in terms of AUC and of sensitivity and specificity are almost 
identical, for both dichotomized and continuous features. Thus, 
the higher flexibility of the direct method does not increase the 
performance. On the contrary, its lack of robustness can be visu-
alized in Figure 2 depicting the posterior probability and the LR 
obtained with the dichotomized features: due to the larger vari-
ance of the likelihood under Hss, the posterior probability and the 
LR, instead of being monotonous, start to increase with the dis-
tance at some point (d ≈ 0.7), whereas whatever the situation with 
the indirect method, posterior probability and LR always decrease 
with d, see Figure 3 depicting the posterior probability and the 
LR obtained with indirect method, this time on the continuous 
features.

TA B L E  3  Baseline comparison of the three methods on the calibration and test sets, using dichotomized features, in terms of AUC, 
sensitivity (Sn) and specificity (Sp) for the threshold maximizing Youden's index, all in %

Method

Calibration Test

AUC Threshold Sn Sp AUC Threshold Sn Sp

Direct 91.2 0.43 80.6 91.3 91.4 0.54 78.4 94.9

Indirect scalar d 91.2 0.62 80.6 91.3 91.5 0.75 78.4 94.9

Indirect vector d 98.5 0.54 93.4 96.3 97.1 0.56 91.1 94.2

TA B L E  4  Baseline comparison of the three methods on the calibration and test sets, using continuous features, in terms of AUC, 
sensitivity (Sn), and specificity (Sp) for the threshold maximizing Youden's index, all in %

Method

Calibration Test

AUC Threshold Sn Sp AUC Threshold Sn Sp

Direct 92.1 0.44 81.1 92.5 93.0 0.50 81.3 94.6

Indirect scalar d 92.1 0.64 81.1 92.5 93.0 0.73 81.3 94.6

Indirect vector d 98.9 0.58 94.4 97.0 97.8 0.57 91.3 95.1
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Also noteworthy, the performance obtained with the indirect 
method using a vectorial distance is significantly better than those 
of the methods working with a scalar distance: the AUC on the 
calibration and test sets jumps from 91%– 92% to 97%– 98%, the 
standard deviation of the AUC being estimated at 0.7% using 3- 
fold cross- validation on the calibration set. The distributions of the 
score (aT d + b) resulting from the logistic regression, the regression 
itself, the posterior probability and the LR are shown in Figure 4. 
The only drawback lies in the increased, but perfectly tractable 
computational cost (10 minutes instead of a few seconds, on a 
4,2 GHz Intel Core i7).

Finally, the dichotomization of the features decreases the per-
formance, but only marginally (the AUC is decreased by ≈ 1%). Note 
that, in this precise case where the features quantify the amount of 
odor compounds, this could be due to the fact that the normalization 
of the compound proportion uses all these compounds, whereas it is 
not known whether they are all relevant. Note also that the normal-
ization was improved by performing it in the logarithmic scale rather 
than in the linear scale (the former improving the reproducibility, see 
Table 2), with which continuous features did not outperform dichot-
omized features, as shown in a previous study (29). Finally, other 
normalization methods specific to GCxCG- MS data might advanta-
geously be investigated (33) but are outside the scope of this paper.

F I G U R E  3  Results of the indirect method with the scalar 
distance d on continuous features, as functions of d, on the 
calibration set. a) Empirical distribution of d under Hss (1,594 pairs). 
b) Empirical distribution of d under Hds (841,457pairs). c) Logistic 
regression (dotted line), and deduced posterior probability of Hss 
with equal priors (continuous line). d) "Likelihood ratio" exp(aT d + b) 
corresponding to the logistic regression (dotted line), and likelihood 
ratio (continuous line)

FIGURE 4 Results of the indirect method with the vectorial distance 
d on continuous features, as functions of the score aT d +b, on the 
calibration set. a) Empirical distribution of the score aT d + b under 
Hss (1 594 pairs). b) Empirical distribution of the score aT d + b under 
Hds (841,457 pairs). c) Logistic regression (dotted line), and deduced 
posterior probability of Hss with equal priors (continuous line). d) 
"Likelihood ratio" exp(aT d + b) corresponding to the logistic regression 
(dotted line), and likelihood ratio (continuous line)
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3.2  |  Comparison of three methods with 
feature selection

The number of selected features using the filter approach is re-
ported in Tables 5 and 6, together with the corresponding results 
on the calibration and test sets, for dichotomized and continuous 
features, respectively.

Again, there is almost no difference in performance between the 
direct and indirect methods with a scalar feature, be it on dichoto-
mized or continuous features. In terms of AUC, the selection is more 
efficient on dichotomized features than on continuous ones (94.4% 
with selection instead of 91.5% without for dichotomized features, 
93.5% instead of 93.0% for continuous features, on the test set), with 
an important reduction of the number of the dichotomized features 
(267 instead of 741), and a moderate one for continuous features (535 
instead of 741). Note also that in both cases, this increased perfor-
mance benefits the specificity, which is highly desirable in a forensic 
application (it is crucial in this context not to reject the different- 
source hypothesis, i.e., the defense hypothesis, when in fact it is true).

For both dichotomized and continuous features, the indirect 
method using a vectorial distance is again significantly better than 
the two other methods ones (AUCs around 97%– 98% instead of 
94%– 95% on both calibration and test sets), with a similar number 
of selected features (440 for dichotomized features, 500 for con-
tinuous ones). However, in both cases, the parsimony due to fea-
ture selection does not increase the performance as compared to 
the baseline method, it is quasi- identical with and without selection. 
In return, this testifies to a robustness of the indirect method with 
respect to possibly irrelevant features. And of course, not to have to 
perform the selection spares computation time.

3.3  |  Discussion of the choice of equal priors

In this manuscript, the methods are compared in terms of AUC, sensi-
tivity and specificity. In the case of the indirect methods, the regres-
sion being obtained by fitting a logistic function to the data, whatever 
the prior probabilities P(Hss) and P(Hds), the posterior probability 
P(Hss|d) given by Equation (5) is also a logistic function. Thus, when the 
threshold on P(Hss|d) is varied from 1 to 0, the same ROC curve is de-
scribed, whose AUC only depends on the distance distributions under 
Hss and Hds: only the threshold maximizing Youden's index changes.

With the direct method, the choice of the prior has an influence 
on the shape of the posterior probability, so that the threshold on 
P(Hss|d) can possibly be varied in a different interval (see Figure 3 
where P(Hss|d) never reaches 0, for example). However, in practice, 
there is no influence on AUC, sensitivity, and specificity because, 
again, the AUC depends essentially on the distance distributions 
under Hss and Hds. The only palpable change is on the threshold 
yielding the best compromise between sensitivity and specificity, 
threshold which adjusts to P(Hss) by roughly following it.

Thus, the assumption of equal prior probabilities has practically 
no impact on the LR estimate.

3.4  |  Limitations

From a practical point of view, our work suffers several limitations 
for a real- world forensic application. First, for practical reasons, the 
subjects were sampled at a single time point, so that the variability 
of the data is essentially due to the analytical variability. Second, 
the chromatograms being compared are of the same nature, i.e., 

TA B L E  5  Comparison of the three methods on the calibration and test sets, using dichotomized features, in terms of AUC, sensitivity 
(Sn) and specificity (Sp) maximizing Youden's index, with selection of the number of features among the 741 by cross- validation on the 
calibration set (AUC- CV3 is the mean 3- fold cross- validation AUC on the calibration set, and #feat. denotes the number of features selected 
by cross- validation)

Calibration Test

Method AUC- CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect scalar d 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect vector d 96.4 440 97.6 89.5 97.5 97.0 91.3 94.3

TA B L E  6  Comparison of the three methods on the calibration and test sets, using continuous features, in terms of AUC, sensitivity (Sn) 
and specificity (Sp) maximizing Youden's index, with selection of the number of features among the 741 by cross- validation on the calibration 
set (AUC- CV3 is the mean 3- fold cross- validation AUC on the calibration set, and #feat. denotes the number of features selected by 
cross- validation)

Calibration Test

Method AUC- CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect scalar d 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect vector d 97.0 500 98.3 91.6 97.3 97.7 91.7 94.9
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obtained on samples provided by directly sampling the subjects 
(with contact with the subjects’ hands) whereas in real life, the un-
known source sample will be obtained indirectly from an object on 
the crime scene (without contact with the subject). Third, the odor 
collected on the crime scene might be contaminated by other odors, 
from the environment or from other people. A study focused on mix-
tures of odors, contaminations, and weathered traces has not been 
carried out yet but is considered. However, despite these controlled 
conditions, the PCA of Figure 1 and the statistics of Table 2 show 
that the data are already of limited reproducibility, so that the good 
results we have obtained are encouraging concerning the robust-
ness of the best method to more realistic sampling conditions.

From a methodological point of view, the proposed methods 
are based on a common- source scenario, where it is asked whether 
the two traces originate from the same source or from different 
sources without specifying which sources are considered, and 
not on a specific- source scenario, where the question is whether 
the two traces stem specifically from the known source (34). The 
problem of the common- source scenario is that it does not take 
account of the typicality of the source, contrary to recommenda-
tions for a better estimation of the strength of evidence through 
the LR [18, 7, 35]. But to implement a specific- source scenario, a 
number of traces from the known source are needed to be able to 
estimate the distribution under Hss (for the direct method) or to 
discriminate between the Hss and Hds populations (for the indirect 
methods), which is quite unpractical when dealing with human 
hand odor, and not feasible at this stage of the study (at most four 
usable odor traces were obtained, for only 253 subjects among 
the 534).

4  |  CONCLUSION

To summarize, the advantages expected from an indirect method 
are fully obtained, in particular the dispensation to parameterize the 
likelihoods, and the robustness with respect to differences in their 
variance and/or to possible outliers. Moreover, an increase in perfor-
mance of the indirect method as compared to the direct one is not 
obtained with a scalar distance between odor traces, but when using 
the vector of the distances between each feature of the odor traces. 
This improvement was not really expected, because, especially in the 
forensic context, it is often advocated to convert multivariate data to 
a univariate datum summarizing the relationship between features. 
Finally, the indirect method with a vectorial distance proves also 
robust with respect to potentially irrelevant features since remov-
ing them does not modify the performance, an appealing quality for 
dealing with traces which are not yet solidly characterized, such as 
odor traces.
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