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1 EVALUATION OF DISTANCE-BASED APPROACHES FOR FORENSIC 

2 COMPARISON: APPLICATION TO HAND ODOR EVIDENCE

3 ABSTRACT

4 The issue of distinguishing between the same-source and different-source hypotheses based 

5 on various types of traces is a generic problem in forensic science. This problem is often 

6 tackled with Bayesian approaches, which are able to provide a likelihood ratio that quantifies 

7 the relative strengths of evidence supporting the two competing hypotheses. Here, we focus 

8 on distance-based approaches, whose robustness and especially capacity to deal with high-

9 dimensional evidence are very different, and need to be evaluated and optimized. 

10 A unified framework for direct methods based on estimating the likelihoods of the distance 

11 between traces under the two competing hypotheses, and indirect methods using logistic 

12 regression to discriminate between same-source and different-source distance distributions, 

13 is presented. They are compared in terms of sensitivity, specificity and robustness, with and 

14 without dimensionality reduction, with and without feature selection, on the example of hand 

15 odor evidence. Empirical evaluations on a large panel of 534 subjects show the significant 

16 superiority of the indirect methods, especially without dimensionality reduction.

17 KEYWORDS

18 Bayesian inference; dissimilarity measure; forensic science; human hand odor; likelihood 

19 ratio; logistic regression.

20 HIGHLIGHTS

21 • Direct and indirect distance-based likelihood ratio estimation methods for forensic 

22 comparison are investigated

23 • They are applied to high-dimensional evidence consisting of hand odor traces

24 • Their robustness, AUC, sensitivity and specificity are evaluated on a panel of 534 subjects

25 • Indirect methods based on logistic regression outperform direct ones and are more robust

26 • Indirect methods using a vectorial distance outperform those using a scalar one, with and 

27 without feature selection

28
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29

30 1. INTRODUCTION

31 A generic problem in forensic science is to decide whether a trace of an unknown source, often 

32 drawn from a crime scene, and a trace from a known source, stem from the same source, a 

33 person or a firearm for example. If the source is a person, the traces might be biometric such 

34 as a DNA profile [Aitken and Taroni 2004] [Puch-Solis et al. 2012], fingerprints [Neuman et al. 

35 2012], a voice [Morrison 2011], an olfactory profile [Cuzuel et al. 2017], or they might consist 

36 of footwear impressions [Tang and Srihari 2014bis], handwriting [Tang and Srihari 2014], etc. 

37 If the source is a firearm, the traces may be features such as striations and impressions of a 

38 bullet or of a cartridge case [Mattijssen et al. 2020].

39 The most common approach to this problem is to estimate a likelihood ratio (LR), i.e. the ratio 

40 of the joint probability of occurrence of the two traces under the hypothesis that they arose 

41 from the same source and under the hypothesis that they arose from different sources. A 

42 convenient solution is to replace the joint probability of the traces by the probability of a 

43 distance between the two traces quantifying their dissimilarity [Neuman et al. 2007, Riva and 

44 Champod 2014, Tang and Srihari 2014bis, Ali et al. 2015, Muehlethaler  et al. 2016, Riva et al. 

45 2020, Vergeer et al. 2020]. If, as is most often the case, the distance is scalar, there is an 

46 important loss of information. Thus, we choose to focus on distance-based methods, but with 

47 the possibility to use a vectorial distance between traces.

48 Furthermore, the distance-based LR estimate can be obtained either directly, by estimating 

49 the distance likelihoods under the two hypotheses, or indirectly, by first using logistic 

50 regression to discriminate between same-source and different source distance distributions, 

51 and then Bayes’ formula to infer the LR. Whilst the direct method is more flexible, the indirect 

52 method is more robust and quite natural in machine learning [Bishop 2006, Hastie et al. 2009]. 

53 It is sometimes advocated for in the forensic context, for the same reasons and also because 

54 it enables score calibration and fusion with minimal mathematical complexity [Enzinger et al. 

55 2016, Morrison 2013]. Here, we show that the indirect method also enables the use of a 

56 vectorial distance, thus preventing the severe information loss suffered by scalar distance 

57 approaches. We discuss the direct and indirect methods in terms of robustness and ability to 

58 handle high dimensional evidence, with or without dimensionality reduction, and with or 
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59 without feature selection. We evaluate them in terms of sensitivity, specificity and robustness 

60 on the example of traces consisting in a hand odor profile.

61 2. MATERIALS AND METHODS

62 2.1 Problem statement

63 The aim is, given the evidence consisting of a pair of traces (e.g. two olfactory profiles), to 

64 decide whether these traces have the same source (e.g. the same person) or not. In the 

65 following, Hss refers to the hypothesis that the two traces stem from the same source, and Hds 

66 to the alternative hypothesis that they stem from different sources. Given the a priori 

67 probabilities P(Hss) and P(Hds), the Bayesian formula yields the posterior probability of Hss 

68 given the evidence E:

69
P H E

f E H P H
f E H P H f E H P Hss

ss ss

ss ss ds ds




( | )
( | ) ( )

( ) ( ) ( ) ( )
(1)

70 where f(E|Hss) and f(E|Hds) are the distributions of the evidence under Hss and Hds, or 

71 likelihoods. Jeffreys developed an absolute scale to evaluate the degree of confidence in the 

72 same-source hypothesis outside a decisional framework based on the posterior probability of 

73 Hss using the LR [Jeffreys 1939, Robert 2001] defined as:

74
LR E

f E H
f E H

( )
( | )
( | )

ss

ds


(2)

75 which is independent from the a priori probabilities. In fact, the observed evidence E consists 

76 of the two traces which are represented by n-dimensional vectors (whose components are 

77 the amounts of each odor compound). Since we focus on distance-based methods, the 

78 information contained in these two vectors is transformed into a distance or dissimilarity 

79 measure, which can be either a scalar or a n-vector (a distance for each feature of the trace, 

80 here for each odor compound). In the following, this distance between the two traces will be 

81 denoted by d.

82 2.2 Candidate methods

83 The LR can be obtained either directly, i.e. by estimating the likelihoods of the distance under 

84 the two competing hypotheses, or indirectly, i.e. using first logistic regression to discriminate 

85 between same-source and different source distance distributions, and then formulas (1) and 

86 (2) to infer the LR. 
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87 2.2.1 Direct methods

88 For direct methods, we need to be able to evaluate f(d|Hss) and f(d|Hds) whatever the value 

89 of d. For this purpose, part of the available dataset can be used to build pairs of traces of the 

90 two types, same-source and different-source pairs. If d is scalar, or of dimension 2 or 3 at 

91 most, the two empirical distributions can be fitted, with Gaussian mixtures, for example, 

92 leading to parametric estimates of f(d|Hss) and f(d|Hds) [Mattijssen et al. 2020, Riva and 

93 Champod 2014, Riva et al. 2020]. In the case of many features, a fit of each component of d 

94 can be performed in the same way, and the overall likelihoods can be approximated through 

95 the product of the likelihoods in each dimension, leading to the naïve Bayes classifier. To be 

96 successful, the latter approach necessitates however that the features are not overly 

97 correlated.

98 2.2.2. Indirect methods

99 The aim of these method is to build a discriminative model of the boundary between the two 

100 categories of pairs (same-source and different-source pairs) rather than a generative model 

101 explicitly parameterizing the distributions in the two categories. It is well known that, under 

102 the hypothesis of single-Gaussian distributions with the same variance under Hss and Hds in 

103 the scalar case, or same covariance matrix in the multidimensional case, the posterior 

104 probability of Hss takes the form of a sigmoidal curve [Bishop 2006, Hastie et al. 2009], hence 

105 the motivation for a logistic regression approach. Despite its result being a discriminative 

106 model, it enables to calculate the posterior probability of Equation (1) as well as the LR of 

107 Equation (2). As a matter of fact, the logistic regression model with parameters  = [aT b]T has 

108 output:

109
r d

a d b
( , ) 1

1 exp ( )T  
  

(3)
110 where b is a scalar, and a is either a scalar in the case of a scalar distance, or otherwise a n-

111 vector (of the dimension of the evidence). If the proportions of the same-source and different-

112 source categories in the calibration set are denoted by fss and fds, r(d, ) approximates:

113

f d H f
f d H f f d H f

ss ss

ss ss ds ds
( | )

( | ) ( | ) (4)
114 Thus, the posterior probability for a priori probabilities P(Hss) and P(Hds) can be retrieved with:
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115

P H d
a d b

f
f

P H
P H

( | ) 1

1 exp ( )
( )
( )

ss
T ss

ds

ds

ss
 


  

(5)
116 and the likelihood ratio with:

117
LR d a d b

f
f

( ) exp T ds

ss
  

(6)

118 2.3. Pros and cons

119  The indirect method offers several advantages:

120 - it spares the necessity to fit the likelihoods,

121 - in the multi-dimensional case, contrary to the naïve Bayes classifier, the independence 

122 assumption is not necessary, because the logistic regression automatically takes care of the 

123 correlation between features,

124 - by construction, the log LR is defined by a hyperplane, and thus robust with respect to the 

125 equal variance assumption, and to outliers or sparse data far from the boundary, 

126 - in the forensic context, since the log LR is directly proportional to aT d + b, the logistic allows 

127 a convenient and interpretable calibration of the dissimilarity score d, and a fusion of scores 

128 in the multidimensional case [Morrison 2013].

129 On the other hand, the indirect method might suffer from:

130 - a reduced flexibility since it amounts to assume single-Gaussian distributions,

131 - a possibly important computation time in the case of high-dimensional evidence and of a 

132 distance of the same dimension.

133 These advantages and disadvantages will be examined and discussed on the example of hand 

134 odor evidence using a large panel of subjects.

135 2.4. Dataset description

136 A panel of 534 volunteers was set up which gathers 218 men and 316 women aged 7 to 94 

137 years (median 28, interquartile interval [22 ; 48]), see Table 1 for the detailed composition in 

138 terms of sex and age. Note that this composition does not aim at reflecting that of a precise 

139 target population, such as one which is more likely to commit a crime, but to be as 

140 representative of the diversity of odors as possible. As a matter of fact, criminal investigations 

141 also often necessitate to look for victims, or to discriminate between traces from different 

142 people present at a crime scene, including those of victims or witnesses, who might be women 
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143 as well as men, children or seniors as well as middle-aged adults. All data were completely 

144 anonymized prior to analysis, and no personal information was stored.

145 The goal was here to identify the subjects by their hand odor, whose volatile profile was shown 

146 to display a between-subject variability which is sufficient for differentiation [Curran et al. 

147 2010, Cuzuel et al. 2017]. Also, in the forensic context, the hands have the advantage to be 

148 more likely to be directly in contact with objects at a crime scene, and to be easier to sample 

149 during a police interrogation.

150 The volatile profiles were obtained by a direct sampling procedure using identical sample 

151 collection kits of 4 small polymer strands that the subjects were asked to rub together in their 

152 hands for 15 minutes. The polymer strands were thermodesorbed, and the concentrated 

153 substances were separated by comprehensive bidimensional gas chromatography (GCxGC) 

154 coupled with mass spectrometry (MS). The sampling method and the optimization of the 

155 GCxGC-MS analysis were extensively described in [Cuzuel et al. 2017bis, Cuzuel et al. 2018]. 

156 Data were acquired, converted to .mzXML files with GC Real Time Analysis 4.20 (Shimadzu 

157 software), and then processed with MatlabTM (Natick, MA, USA) version 9.6.0.1150989 

158 (R2019a), its Statistics and Machine Learning Toolbox version 11.5 and its Bioinformatics 

159 Toolbox version 4.12.

160 Using a “home-made” Matlab script [Cuzuel 2017], the preliminary manual processing of 25 

161 chromatograms obtained on 3 subjects between 23 and 26 years old of both genders sampled 

162 several times at different time instants enabled us to draw up a first list of several hundreds 

163 of peaks. A library was built to store their retention times, their linear retention index, their 

164 mass spectrum, and the name of the corresponding compound when it could be identified 

165 using the NIST library. Indeed, if the availability of its mass spectrum is compulsory, a 

166 compound does not need to be formally identified for the comparison of chromatograms. We 

167 also checked whether compounds described in the literature as constituents of the human 

168 hand odor were present in this library, otherwise they were included. The library was then 

169 continuously enriched as the panel was increased with compounds potentially relevant to 

170 human hand odor because of their empirical frequency in new samples. This work led us to a 

171 customized library of 741 compounds, which were looked for in each chromatogram. As a 

172 result, each sample was characterized by the peak area of 741 compounds.

173 In order to compensate for uncontrolled variations of the total area of the chromatograms, 

174 the sum of these areas was normalized in logarithmic scale to unit value, see Table 2 for a 
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175 comparison of the reproducibility of the data without normalization, and normalization in 

176 scalar and logarithmic scales. Not knowing whether all 741 compounds are really relevant for 

177 identification (the median frequency of presence of the compounds across all the samples is 

178 of 40.2 %, quartiles [12.8 %; 77.6 %]), such a normalization might be questionable. Thus, the 

179 possibility to avoid the problem by working on the binarized areas, i.e. 1 if the compound is 

180 present, or 0 if it is absent from the sample, was also investigated. Also, this approach might 

181 be of interest for forensic identification problems dealing with intrinsically binary features, 

182 such as gradient, structural and concavity (GSC) binary features in handwriting identification 

183 [Srihari et al. 2008]. In the following, we refer to these traces of 741 features, continuous or 

184 binarized, as "odor traces".

185 As stated above, the subjects were sampled in quadruplicate, but due to unavoidable mishaps 

186 with some samples (like accidently dropping a polymer on the floor during sampling) and to 

187 chromatographic problems (such as failures of the cryogenic modulator), 1690 odor traces 

188 were obtained for the 534 subjects (44 were sampled once, 77 twice, 160 three times, and 

189 the remaining 253 subjects four times, leading to an average of 3.2 odor traces per subject). 

190 This data set was split into a calibration set for training and validation, and an independent 

191 test set for performance estimation. The split was made so as to respect the gender 

192 proportions, with subject of all ages in the two sets, and odor traces of the same subject being 

193 put in the same set. As a result, the calibration set comprises 412 subjects and their 1 299 

194 odor traces (corresponding to 1 594 Hss and 841 457 Hds pairs), and the test set comprises the 

195 remaining 122 subjects and their 391 odor traces (leading to 481 Hss and 75 764 Hds pairs). The 

196 way the odor traces distribute between calibration and test set can be grasped through the 

197 Principal Component Analysis (PCA) of Figure 1.

198 2.5. Implementation

199 Three methods are implemented: 

200 1) the direct method using a scalar distance between odor traces,

201 2) the indirect method using a scalar distance between odor traces,

202 3) the indirect method using a vectorial distance, i.e. a distance on each odor compound.

203 Note that, given the large dimension of the problem (n=741) and the known correlations 

204 between features, we did not attempt to implement the direct method using a vectorial 

205 distance (i.e. a scalar distance on each feature and the naïve Bayes classifier).
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206 2.5.1. Distances between two odor traces

207 Concerning the choice of the scalar distance, correlation-based distances are robust with 

208 respect to shifts and linear transformations of the features, and since Spearman’s correlation 

209 coefficient is able to capture a monotonic nonlinear association, as opposed to Pearson’s 

210 linear correlation coefficient [Daniels 1944], the Spearman correlation based distance is also 

211 expected to be more robust with respect to nonlinear variations of peak areas. Since this 

212 proved to be true in a previous study where Euclidian distance, Pearson correlation and 

213 Spearman correlation based distances were compared [Cuzuel et al. 2018bis], we restrict here 

214 to Spearman’s correlation based distance for the direct and indirect methods using a scalar 

215 distance. The chosen vectorial distance for the third method is simply the vector of the 

216 absolute differences between feature values.

217 2.5.2. Estimation of the likelihoods for the direct method

218 The calibration set was used to build pairs of odor traces of same and different sources, and 

219 to compute their distances. The empirical densities were fitted with a two-Gaussian mixture 

220 distribution, using Matlab’s function “fitgmdist”, leading to estimates of the likelihoods 

221 f(d|Hss) and f(d|Hds).

222 2.5.3. Estimation of the logistic model for the indirect methods

223 The logistic regression model of Equation (3) with parameters  = [aT b]T was fitted to minimize 

224 the cross-entropy cost function using Matlab’s function “glmfit”.

225 2.5.4. Likelihood ratio and performance estimation

226 For the direct method, the LR was evaluated using the estimates of the likelihoods f(d|Hss) 

227 and f(d|Hds) and Equation (2), as a function of the distance d. For the indirect methods, the LR 

228 was obtained from the fitted logistic regression and Equation (6), and plotted as a function of 

229 the distance d or of the score aT d + b, depending on d being scalar of vectorial.

230 Since there is no true reference for the LR, the performance of the different methods was 

231 evaluated by estimating the posterior probability P(Hss|d) according to Equations (1) and (5) 

232 for the direct and indirect methods respectively, and by performing a binary classification 

233 using equal prior probabilities (P(Hss) = P(Hds) = 0.5). Varying the decision threshold on 

234 P(Hss|d), the sensitivity and the specificity were estimated on the calibration and test sets, 

235 and used to compute the corresponding areas under the receiver operating characteristic 
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236 “ROC” curve (AUC) [Hanley and McNeil 1982]. The performance was further characterized by 

237 the sensitivity and specificity maximizing Youden's index [Youden 1950], i.e. their sum. 

238 2.5.5. Feature selection

239 In a previous study [Cuzuel et al. 2018bis], improved results were obtained using feature 

240 selection. Given the large number of features (odor compounds) and the large size of the data 

241 set, an economic and robust filter approach to this selection was chosen. The idea is to retain 

242 the features that contribute the most to the difference between densities under Hss and Hds. 

243 For each feature, using the absolute values of the difference for the Hss and Hds pairs, we 

244 computed Wilcoxon’s non-parametric test statistic in the case of continuous features, and 

245 Fisher's exact test statistic in the case of binarized features. Then, the features were ranked 

246 in decreasing order of the one-sided p-value of the test (it is a one-sided test since smaller 

247 differences between features under Hss than under Hds are sought for). The number of features 

248 maximizing the AUC was estimated on the calibration set using 3-fold cross-validation. The 

249 cross-validation partitions were randomly chosen with the constraint that the odor traces of 

250 the same subject were put in the same partition. Note that cross-validation also enabled us to 

251 estimate the uncertainty on the AUCs through the mean standard deviation on the three 

252 partitions.

253 3. RESULTS AND DISCUSSION

254 The three methods are first evaluated using all the features of the odor traces (baseline 

255 comparison) and then, the possibility to further improve their performance using feature 

256 selection is investigated.

257 3.1. Baseline comparison of the three methods (without feature selection)

258 The results obtained with the three methods on the calibration and test sets are summarized 

259 in Tables 3 and 4 for binarized and continuous features respectively. As a first remark, the 

260 performance of the direct and indirect methods using a scalar distance in terms of AUC and of 

261 sensitivity and specificity are almost identical, for both binarized and continuous features. 

262 Thus, the higher flexibility of the direct method does not increase the performance. On the 

263 contrary, its lack of robustness can be visualized on Figure 2 depicting the posterior probability 

264 and the LR obtained with the binarized features: due to the larger variance of the likelihood 
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265 under Hss, the posterior probability and the LR, instead of being monotonous, start to increase 

266 with the distance at some point (d  0.7). Whereas whatever the situation with the indirect 

267 method, posterior probability and LR always decrease with d, see Figure 3 depicting the 

268 posterior probability and the LR obtained with indirect method, this time on the continuous 

269 features.

270 Also noteworthy, the performance obtained with the indirect method using a vectorial 

271 distance is significantly better than those of the methods working with a scalar distance: the 

272 AUC on the calibration and test sets jumps from 91-92% to 97-98%, the standard deviation of 

273 the AUC being estimated at 0.7% using 3-fold cross-validation on the calibration set. The 

274 distributions of the score (aT d + b) resulting from the logistic regression, the regression itself, 

275 the posterior probability and the LR are shown in Figure 4. The only drawback lies in the 

276 increased, but perfectly tractable computational cost (10 minutes instead of a few seconds, 

277 on a 4,2 GHz Intel Core i7).

278 Finally, the binarization of the features decreases the performance, but only marginally (the 

279 AUC is decreased by  1%). Note that, in this precise case where the features quantify the 

280 amount of odor compounds, this could be due to the fact that the normalization of the 

281 compound proportion uses all these compounds whereas it is not known whether they are all 

282 relevant. Note also that the normalization was improved by performing it in the logarithmic 

283 scale rather than in the linear scale (the former improving the reproducibility, see Table 2), 

284 with which continuous features did not outperform binarized features, as shown in a previous 

285 study [Cuzuel et al. 2018bis]. Finally, other normalization methods specific to GCxCG-MS data 

286 might advantageously be investigated [Chen et al. 2017], but are outside the scope of this 

287 paper.

288 3.2. Comparison of three methods with feature selection

289 The number of selected features using the filter approach is reported in Tables 5 and 6, 

290 together with the corresponding results on the calibration and test sets, for binarized and 

291 continuous feature respectively.

292 Again, there is almost no difference in performance between the direct and indirect methods 

293 with a scalar feature, be it on binarized or continuous features. In terms of AUC, the selection 

294 is more efficient on binary features than on continuous ones (94.4% with selection instead of 

295 91.5% without for binarized features, 93.5% instead of 93.0% for continuous features, on the 
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296 test set), with an important reduction of the number of the binarized features (267 instead of 

297 741), and a moderate one for continuous features (535 instead of 741). Note also that in both 

298 cases, this increased performance benefits the specificity, which is highly desirable in a 

299 forensic application (it is crucial in this context not to reject the different-source hypothesis, 

300 i.e. the defense hypothesis, when in fact it is true).

301 For both binarized and continuous features, the indirect method using a vectorial distance is 

302 again significantly better than the previous ones (AUCs around 97-98% instead of 94-95% on 

303 both calibration and test sets), with a similar number of selected features (440 for binarized 

304 features, 500 for continuous ones). However, in both cases, the parsimony due to feature 

305 selection does not increase the performance as compared to the baseline method, it is quasi-

306 identical with and without selection. In return, this testifies to a robustness of the indirect 

307 method with respect to possibly irrelevant features. And of course, not to have to perform 

308 the selection spares computation time.

309 3.3. Discussion of the choice of equal priors 

310 In this manuscript, the methods are compared in terms of AUC, sensitivity and specificity. In 

311 the case of the indirect methods, the regression being obtained by fitting a logistic function to 

312 the data, whatever the prior probabilities P(Hss) and P(Hds), the posterior probability P(Hss|d) 

313 given by Equation (5) is also a logistic function. Thus, when the threshold on P(Hss|d) is varied 

314 from 1 to 0, the same ROC curve is described, whose AUC only depends on the distance 

315 distributions under Hss and Hds: only the threshold maximizing Youden’s index changes.

316 With the direct method, the choice of the prior has an influence on the shape of the posterior 

317 probability, so that the threshold on P(Hss|d) can possibly be varied in a different interval (see 

318 Figure 3 where P(Hss|d) never reaches 0 for example). However, in practice, there is no 

319 influence on AUC, sensitivity and specificity because, again, the AUC depends essentially on 

320 the distance distributions under Hss and Hds.  The only palpable change is on the threshold 

321 yielding the best compromise between sensitivity and specificity, threshold which adjusts to 

322 P(Hss) by roughly following it. 

323 Thus, the assumption of equal prior probabilities has practically no impact on the LR estimate.

324 3.4. Limitations

325 From a practical point of view, our work suffers several limitations for a real-world forensic 

326 application. First, for practical reasons, the subjects were sampled at a single time point, so 

Page 11 of 31

Journal of Forensic Sciences

Journal of Forensic Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

12

327 that the variability of the data is essentially due to the analytical variability. Second, the 

328 chromatograms being compared are of the same nature, i.e. obtained on samples provided 

329 by directly sampling the subjects (with contact with the subjects’ hands) whereas in real life, 

330 the unknown source sample will be obtained indirectly from an object on the crime scene 

331 (without contact with the subject). Third, the odor collected on the crime scene might be 

332 contaminated by other odors, from the environment or from other people. A study focused 

333 on mixtures of odors, contaminations, and weathered traces has not been carried out yet but 

334 is considered. However, despite these controlled conditions, the PCA of Figure 1 and the 

335 statistics of Table 2 show that the data is already of limited reproducibility, so that the good 

336 results we have obtained are encouraging concerning the robustness of the best method to 

337 more realistic sampling conditions.

338 From a methodological point of view, the proposed methods are based on a common source 

339 scenario, where it is asked whether the two traces originate from the same source or from 

340 different sources without specifying which sources are considered, and not on a specific 

341 source scenario, where the question is whether the two traces stem specifically from the 

342 known source [Neuman and Ausdemore 2020]. The problem of the common source scenario 

343 is that it does not take account of the typicality of the source, contrary to recommendations 

344 for a better estimation of the strength of evidence through the LR [Morrison 2013, Tang and 

345 Srihari 2014, Morrison and Enzinger 2018]. But to implement a specific source scenario, a 

346 number of traces from the known source are needed in order to be able to estimate the 

347 distribution under Hss (for the direct method) or to discriminate between the Hss and Hds 

348 populations (for the indirect methods), which is quite unpractical when dealing with human 

349 hand odor, and not feasible at this stage of the study (at most four usable odor traces were 

350 obtained, for only 253 subjects among the 534).

351 4. CONCLUSIONS

352 To summarize, the advantages expected from an indirect method are fully obtained, in 

353 particular the dispensation to parameterize the likelihoods, and the robustness with respect 

354 to differences in their variance and/or to possible outliers. Moreover, an increase in 

355 performance of the indirect method as compared with the direct one is not obtained with a 

356 scalar distance between odor traces, but when using the vector of the distances between each 

357 feature of the odor traces. This improvement was not really expected, because, especially in 
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358 the forensic context, it is often advocated to convert multivariate data to a univariate datum 

359 summarizing the relationship between features. Finally, the indirect method with a vectorial 

360 distance proves also robust with respect to potentially irrelevant features since removing 

361 them does not modify the performance, an appealing quality for dealing with traces which are 

362 not yet solidly characterized, such as odor traces.
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460 FIGURE CAPTIONS

461

462 Figure 1. PCA of the data set showing the distribution of the odor traces between calibration 

463 and test sets. The PCA was performed on the covariance matrix of the continuous features, 

464 i.e. normalized in logarithmic scale.

465
466
467 Figure 2. Results of the direct method with the scalar distance d on binarized feature, as 

468 functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs), and 

469 estimated density (mixture of 2 Gaussians). b) Empirical distribution of d under Hds 

470 (841 457pairs), and estimated density (mixture of 2 Gaussians). c) Posterior probability of Hss 

471 obtained using Bayes' formula with equal priors. d) Likelihood ratio.

472
473
474 Figure 3. Results of the indirect method with the scalar distance d on continuous features, as 

475 functions of d, on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs). b) 

476 Empirical distribution of d under Hds (841 457pairs). c) Logistic regression (dotted line), and 

477 deduced posterior probability of Hss with equal priors (continuous line). d) "Likelihood ratio" 

478 exp(aT d +b) corresponding to the logistic regression (dotted line), and likelihood ratio 

479 (continuous line).

480
481
482 Figure 4. Results of the indirect method with the vectorial distance d on continuous features, 

483 as functions of the score aT d +b, on the calibration set. a) Empirical distribution of the score 

484 aT d + b under Hss (1 594 pairs). b) Empirical distribution of the score aT d + b under Hds 

485 (841 457pairs). c) Logistic regression (dotted line), and deduced posterior probability of Hss 

486 with equal priors (continuous line). d) "Likelihood ratio" exp(aT d +b) corresponding to the 

487 logistic regression (dotted line), and likelihood ratio (continuous line).

488
489
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490 TABLE CAPTIONS

491

492 Table 1. Panel composition in terms of sex and age.

493

494 Table 2. Reproducibility of the odor trace features (peak areas), without and with two 

495 normalizations, estimated on the 490 subjects sampled at least twice (IQI stands for 

496 interquartile interval).

497

498 Table 3. Baseline comparison between the three methods on the calibration and test sets, 

499 using binarized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing 

500 Youden's index, all in %.

501

502 Table 4. Baseline comparison between the three methods on the calibration and test sets, 

503 using continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing 

504 Youden's index, all in %.

505

506 Table 5. Comparison between the three methods on the calibration and test sets, using 

507 binarized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing Youden's 

508 index, with selection of the number of features among the 741 by cross-validation on the 

509 calibration set (AUC-CV3 denotes the mean 3-fold cross-validation AUC on the calibration set, 

510 and #feat. the number of features selected by cross-validation).

511

512 Table 6. Comparison between the three methods on the calibration and test sets, using 

513 continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing Youden's 

514 index, with selection of the number of features among the 741 by cross-validation on the 

515 calibration set (AUC-CV3 denotes the mean 3-fold cross-validation AUC on the calibration set, 

516 and #feat. the number of features selected by cross-validation).

517
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518 TABLES

519

520 Table 1. Panel composition in terms of sex and age.

521

age

sex

7-17 18-64 65-94 total

man 18 182 18 218

woman 28 268 20 316

total 46 450 38 534

522

523

524 Table 2. Repeatability of the odor trace features (peak areas), without and with two 

525 normalizations, estimated on the 490 subjects sampled at least twice (IQI stands for 

526 interquartile interval).

527

Normalization Median relative standard deviation [IQI] in %

None 61.0 [32.1 ; 78.0]

In scalar scale 56.1 [31.9 ; 74.2]

In logarithmic scale 33.2 [17.9 ; 48.8]

528

529

530

531

532

533

534

535

536

537

538

539
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540 Table 3. Baseline comparison between the three methods on the calibration and test sets, 

541 using binarized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) for the threshold 

542 maximizing Youden's index, all in %.

543

Calibration Test

Method AUC threshold Sn Sp AUC threshold Sn Sp

Direct 91.2 0.43 80.6 91.3 91.4 0.54 78.4 94.9

Indirect scal. d 91.2 0.62 80.6 91.3 91.5 0.75 78.4 94.9

Indirect vect. d 98.5 0.54 93.4 96.3 97.1 0.56 91.1 94.2

544

545

546 Table 4. Baseline comparison between the three methods on the calibration and test sets, 

547 using continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) for the 

548 threshold maximizing Youden's index, all in %.

549

Calibration Test

Method AUC threshold Sn Sp AUC threshold Sn Sp

Direct 92.1 0.44 81.1 92.5 93.0 0.50 81.3 94.6

Indirect scal. d 92.1 0.64 81.1 92.5 93.0 0.73 81.3 94.6

Indirect vect. d 98.9 0.58 94.4 97.0 97.8 0.57 91.3 95.1

550

551

552

553

554

555

556

557
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558 Table 5. Comparison between the three methods on the calibration and test sets, using 

559 binarized features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing Youden's 

560 index, with selection of the number of features among the 741 by cross-validation of the 

561 calibration set (AUC-CV3 the mean 3-fold cross-validation AUC on the calibration set, and 

562 #feat. denotes the number of features selected by cross-validation).

563

Calibration Test

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect scal. d 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect vect. d 96.4 440 97.6 89.5 97.5 97.0 91.3 94.3

564

565

566 Table 6. Comparison between the three methods on the calibration and test sets, using 

567 continuous features, in terms of AUC, sensitivity (Sn) and specificity (Sp) maximizing Youden's 

568 index, with selection of the number of features among the 741 by cross-validation of the 

569 calibration set (AUC-CV3 the mean 3-fold cross-validation AUC on the calibration set, and 

570 #feat. denotes the number of features selected by cross-validation).

571

Calibration Test

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect scal. d 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect vect. d 97.0 500 98.3 91.6 97.3 97.7 91.7 94.9

572
573
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Figure 1: PCA of the data set showing the distribution of the odor traces between calibration and test sets. 
The PCA was performed on the covariance matrix of the continuous features, i.e. normalized in logarithmic 

scale. 
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Figure 2: Results of the direct method with the scalar distance d on binarized feature, as functions of d, on 
the calibration set. a) Empirical distribution of d under Hss (1 594 pairs), and estimated density (mixture of 
2 Gaussians). b) Empirical distribution of d under Hds (841 457pairs), and estimated density (mixture of 2 
Gaussians). c) Posterior probability of Hss obtained using Bayes' formula with equal priors. d) Likelihood 

ratio. 
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Figure 3: Results of the indirect method with the scalar distance d on continuous features, as functions of d, 
on the calibration set. a) Empirical distribution of d under Hss (1 594 pairs). b) Empirical distribution of d 

under Hds (841 457pairs). c) Logistic regression (dotted line), and deduced posterior probability of Hss with 
equal priors (continuous line). d) "Likelihood ratio" exp(aT d +b) corresponding to the logistic regression 

(dotted line), and likelihood ratio (continuous line). 
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Figure 4: Results of the indirect method with the vectorial distance d on continuous features, as functions of 
the score aT d +b, on the calibration set. a) Empirical distribution of the score aT d + b under Hss (1 594 

pairs). b) Empirical distribution of the score aT d + b under Hds (841 457pairs). c) Logistic regression 
(dotted line), and deduced posterior probability of Hss with equal priors (continuous line). d) "Likelihood 
ratio" exp(aT d +b) corresponding to the logistic regression (dotted line), and likelihood ratio (continuous 

line). 
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For Peer Review

age

sex

7-17 18-64 65-94 total

man 18 182 18 218

woman 28 268 20 316

total 46 450 38 534
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For Peer Review

Normalization Median relative standard deviation [IQI] in %

None 61.0 [32.1 ; 78.0]

In scalar scale 56.1 [31.9 ; 74.2]

In logarithmic scale 33.2 [17.9 ; 48.8]
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For Peer Review

Calibration Test

Method AUC threshold Sn Sp AUC threshold Sn Sp

Direct 91.2 0.43 80.6 91.3 91.4 0.54 78.4 94.9

Indirect scal. d 91.2 0.62 80.6 91.3 91.5 0.75 78.4 94.9

Indirect vect. d 98.5 0.54 93.4 96.3 97.1 0.56 91.1 94.2
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For Peer Review

Calibration Test

Method AUC threshold Sn Sp AUC threshold Sn Sp

Direct 92.1 0.44 81.1 92.5 93.0 0.50 81.3 94.6

Indirect scal. d 92.1 0.64 81.1 92.5 93.0 0.73 81.3 94.6

Indirect vect. d 98.9 0.58 94.4 97.0 97.8 0.57 91.3 95.1
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For Peer Review

Calibration Test

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect scal. d 94.4 267 94.5 80.9 94.7 94.4 84.6 92.8

Indirect vect. d 96.4 440 97.6 89.5 97.5 97.0 91.3 94.3
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For Peer Review

Calibration Test

Method AUC-CV3 #feat. AUC Sn Sp AUC Sn Sp

Direct 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect scal. d 93.1 535 93.1 81.3 93.3 93.5 82.3 95.5

Indirect vect. d 97.0 500 98.3 91.6 97.3 97.7 91.7 94.9
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