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The background scene generator MATISSE, whose main functionality is to generate natural background
radiance images, makes use of the so-called Correlated K (CK) model. It necessitates either loading or
computing thousands of CK coefficients for each atmospheric profile. When the CK coefficients cannot be
loaded, the computation time becomes prohibitive. The idea developed in this paper is to substitute fast
approximate models for the exact CK generator; using the latter, a representative set of numerical ex-
amples is built and used to train linear or nonlinear regression models. The resulting models enable an
accurate CK coefficient computation for all the profiles of an image in a reasonable time. © 2009 Optical
Society of America
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1. Introduction

Optronic sensor designers require the calculation of
the radiation contrast between targets and back-
ground in order to assess the detection performance
of their surveillance systems. In addition, since the
sensor may be used in many different meteorological
conditions, the background radiance and the trans-
mitted radiation of the target must be evaluated
for a large set of atmospheric conditions. Advanced
Modeling of the Earth for the Imaging and the
Simulation of the Scenes and their Environment
(MATISSE-v1.5) [1], whose main functionality is to
generate natural background radiance images and
useful atmospheric radiative quantities (radiance
and transmission along a line of sight, local illumina-
tion, or solar irradiance, for example), is hence a per-
fectly suited tool for performance estimation of
optronic sensors. Unlike most other image simula-

tors, which favor computation speed to the detriment
of physical realism, MATISSE is developed to gener-
ate reference images using efficient methods in
terms of accuracy and computation time.

Therefore, molecular absorption calculation, re-
quired to solve the radiative transfer equation, is
made in MATISSE using a Correlated K (CK) model
[2,3]. This model has two benefits: its numerical
efficiency and computational speed in modeling non-
gray absorption by gases in inhomogeneous at-
mospheres, and its ability to include atmospheric
multiple scattering computation at a lower cost than
using line-by-line calculations. Prior to running
MATISSE, each atmospheric profile describing the
evolution of the pressure, the temperature, and the
molecular mixing ratios on an altitude grid must
be converted to a CK profile by the use of a CK gen-
erator. CK parameters are computed for each alti-
tude within the user-required spectral band (from
700 up to 25; 000 cm−1; a resolution of 1 cm−1 allows
the continuous reconstitution of the band) and stored
in files. These files are then read by MATISSE and
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introduced into the radiative transfer equation. Once
the CK coefficients have been set, running MATISSE
is very efficient since the same coefficients can be as-
sociated with various sight conditions.
Themaindrawback of this approach lies in the com-

putation time of the CK coefficients whenever a new
profile has to be introduced in MATISSE (typically a
radiosounding). The CK calculation is indeed based
on a very time-consuming line-by-line model [4] in or-
der to take into account the variability of the absorp-
tion coefficient versus the wavenumber. In practice, it
necessitates approximately 10 min for one single pro-
file, and in order to account for the large number of
thermodynamic profiles that is required for atmo-
spheric variability modeling [for example, to build a
three-dimensional (3D) scene whose profiles come
fromweather forecast output], the overall CK compu-
tation would take at least two months.
As accelerating simplification, current radiative

transfer models [5] make use of one-dimensional
(1D) stratified atmospheres, but they are, therefore,
not able to take into account the horizontal structure
of the atmosphere. Attempts have recently been
made [6] to introduce this dependency by means of
interpolations and scaling factors. In MATISSE,
the 3D variability of the aerosols is already handled
by the Global Aerosol Dataset (GADS) [7]. If an alter-
native, faster, and, nevertheless, accurate CK compu-
tation can be found, we will be able to both deal with
the 3D variability of the atmosphere and preserve
the reference side of radiative transfer calculus made
by MATISSE.
In this paper, we suggest substitution with approx-

imate models, expected to be much faster to run, for
the exact CK generator. The idea is to build, for each
wavenumber, a local model describing the depen-
dency of each particular CK coefficient on the ther-
mochemical conditions from a large number of
atmospheric profiles. First, the CK generator would
be used to compute a representative set of numerical
examples of the atmospheric conditions and of the
corresponding CK values; these examples would
then be used to fit linear or nonlinear regression
models. Provided that their domain of validity en-

compasses the variability of the profiles, the models
will enable us to deal with 3D scenes made up of
about 10,000 profiles describing the state of the at-
mosphere above a particular geographic region.
The objective of this paper is, hence, to describe
how statistical modeling can replace the CK genera-
tor, with significant reduction of computation time
and small loss of accuracy.

The paper is organized as follows. Section 2
describes the CK coefficients, while Section 3 is dedi-
cated to the data set. Section 4 details the algorithm
that builds the models. Finally, the resulting models
and their performance are presented, in terms of
accuracy as well as of computation time.

2. Correlated K Description

The integration of any radiative function VðkÞ on the
wavenumber intervalΔσ using a line-by-line method
is inconceivable, due to the variability of the absorp-
tion coefficient kðσÞ on the interval Δσ; a reliable re-
sult would imply extremely small integration steps,
and would be prohibitive to compute. However, by
sorting the absorption spectrum, it is possible to sub-
stitute integration on the absorption coefficient to
the wavenumber integration. Thus, the estimation
of the mean value of V requires only the values taken
by the absorption coefficient k on the interval Δσ, to-
gether with their occurrence number; the exact cor-
respondence between the wavenumber σ and the
absorption coefficient k is not required.

The mean value on the intervalΔσ of the radiative
function VðkðσÞÞ can then be written as

�VΔσ ¼
1
Δσ

Z
Δσ

VðkðσÞÞdσ ¼
Z1
0

VðkðgÞÞdg;

where the function kðgÞ describes the cumulative dis-
tribution of the k values; for each ratio g, the value
kðgÞ is such that the ratio occurrence of the event
“k ≤ kðgÞ” equals g (see Fig. 1).

This integral can be approximated by a Gauss
quadrature: by choosing N quadrature points

Fig. 1. The dependency of the absorption coefficient k on the wavenumber σ (left) can be replaced by the cumulated frequencies of the k
values (right). The CKi coefficients are the values of the absorption coefficient for specified values gi of the occurrence ratio.
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fgi; i ¼ 1;…;Ng and defining CKi as the kðgÞ values
to the quadrature points

CKi ¼ kðgiÞ;

it can take the form

�VΔσ ¼
Z1
0

VðkðgÞÞdg ≈

XN
i¼1

wiVðCKiÞ: ð1Þ

In MATISSE, the number of quadrature points has
been set to 17, the 17 occurrence ratios fgi; i ¼
1;…; 17g being fixed, as well as the 17 weights wi.
This method enables us to suppress the explicit
dependency on the wavenumber on the spectral
interval Δσ.
In fact, the absorption coefficient k depends not

only on the wavenumber σ, but also on the thermo-
physical conditions. More precisely, the absorption
coefficient k is a function of the wavenumber σ, the
temperature T, the pressure P, and the mixing ratios
Xm of each molecule mðm ¼ 1;…;MÞ. Consequently,
the k distribution and the CKi values also depend on
these variables and vary with the position considered
in the atmosphere:

CKi ¼ CKiðσ0;P;T;X1; :::;XMÞ:

A large part of the computations of MATISSE is dedi-
cated to the CKi estimations in the area of interest. It
consists in replacing the thermophysical data, repre-
sented by the ðP;T;X1;…;XMÞ values at different
points in the atmosphere, by optical parameters, re-
presented by the 17 CKi values at these points and
at each spectral resolution element σ0 (we consider
the band from 700 up to 25; 000 cm−1 with a 1 cm−1

resolution).
When this computation has been done, the integra-

tion of any radiative parameter (atmospheric source
functions, extinction coefficients, background radi-
ance) is performed rapidly; the parameter values
are computed in the whole area for each of the 17
CK values. Image generation then consists of loading
or computing the CK coefficients and, for each pixel,
propagating the source terms corrected by molecular
absorption by using Eq. (1). A typical illustration is
given by Eq. (2). The left term is the average radiance
seen by the observer in the spectral interval Δσ and
the θ, φ direction. The first term on the right repre-
sents the surface background radiance (land, sea, or
cloud) propagated through the atmosphere. The sec-
ond term on the right represents the contribution of
atmospheric source functions. Once computed, the
Li

Sðθ;φÞ and Jiðs; θ;φÞ terms are stored in files.
Radiance computation then consists of reading these
radiative quantities and propagating them with the
CK model along the path from the background to the
observer:

�LΔσ
obsðθ;φÞ ¼

XN
i¼1

wiLi
Sðθ;φÞ exp

�
−

Zobs
s0

kexti ðs0Þds0
�

þ
XN
i¼1

wi

Zobs
s0

wi exp
�
−

Zobs
s

kexti ðs0Þds0
�

× Jiðs; θ;φÞkexti ðsÞds; ð2Þ

where

• N is the number of quadrature points, N ¼ 17
in MATISSE;

• wi is the ith quadrature weight;
• kextiðsÞ is the ith value of the CK parameters at

location s: kexti ðsÞ ¼ kiðsÞ þ kextðsÞwith kiðsÞ one of the
N CK values calculated at point s and kextðsÞ the
absorption coefficient of the aerosols at location s;

• Li
sðθ;φÞ is the background surface radiance in

the ðθ;φÞ direction when the radiative transfer equa-
tion is solved with the ith CK parameter; and

• Jiðs; θ;φÞ is the atmospheric source function, at
location s and in the ðθ;φÞ direction, when the radia-
tive transfer equation is solved with the ith CK
parameter.

Calculation of the brightness mean value amounts
to N independent calculations, and a weighted sum
of their results.

When the average radiance is calculated with the
CK method, the atmospheric source functions have
to be determined, as well as the ground and cloud ra-
diances for each of the N values kextiðsÞ. This method
makes it possible to couple the molecular absorption
with the scattering by way of the Li

Sðθ;φÞ and
Jiðs; θ;φÞ parameters, and also to use Beer’s law,
as can be seen in Eq. (2).

This mode of computation is based on the conver-
sion, for each profile, of its thermophysical represen-
tation (pressure, temperature, and molecular mixing
ratios) into its optical characterization—a set of CK
values defined for each spectral resolution element
σ0. It allows fast computations for all the radiative
parameter integrations, so that the computation time
is essentially devoted to this task. But the latter is
highly time consuming: for a profile, that is, for an at-
mospheric column above a point on Earth discretized
in 49 altitude points, the 24; 300 wavenumbers ×
49 altitudes × 17 quadrature points ¼ 20; 241; 900
CK computations require 10 min. For a whole 3D
scene including 10,000 profiles, the computation time
would be about two months. The idea studied in this
paper is to accelerate the CK computations by using
approximate but faster models.

An estimation of the computation sensitivity to the
CK accuracy has suggested that, for each profile,
each wavenumber and each altitude, only the first
eight nonzero CK coefficients need to be approxi-
mated with a relative error of less than 5% or an
absolute error of less than 10−12 cm−1.

6772 APPLIED OPTICS / Vol. 48, No. 35 / 10 December 2009



3. Dataset

The dataset climato [8] consists of 4672 profiles. A
profile represents a column above a given point on
Earth, on a given date. For each profile, the record
includes the thermodynamic and optical properties
at 49 altitudes defined by 49 discrete values of the
pressure (see Fig. 2). These levels of pressure run
from 10−2 up to 1:03 × 105 Pa.
The thermodynamic representation consists of the

pressure, the temperature, and the molecular mixing
ratios of 31 of the main molecules represented in the
HITRAN database [9], later denoted by the vector X.
The optical representation consists of the CKi
values ði ¼ 1;…; 17Þ for each wavenumber. In the fu-
ture, a spectral bandwidth from 700 to 25; 000 cm−1

with a resolution of 1 cm−1 will be needed, leading
to 24; 300 × 49pressures × 17 quadrature points ¼
20; 241; 900 CK values. But for this study, which is
meant as a preliminary validation of the proposed
approach, the coefficients were computed for a subset
of 198 spectral values in the bandwidth from 750 to
3; 015 cm−1, leading to 198 × 49 × 17 ¼ 164; 934 CK
coefficients, and only those are to be modeled.
The profiles have been chosen to cover a wide set of

thermodynamic conditions.Thegeographical location
runs from latitude −90° up to þ90° with a 2:8125°
sampling interval, each of them during a whole year,
with a five-day sampling interval. This results in a
dataset of 64 latitudes × 73dates ¼ 4; 672profiles.
In addition to the profiles, the dataset also contains,

for each wavenumber value, the list of the molecules
that absorb at this frequency; their corresponding
components in the vector X are likely to be pertinent
variables of the models.
Finally, we would like to stress that these data

have been obtained from computations and have
no measurement error. Thus, the output variability

is due only to the input variability and the objective
for the model accuracy is not limited by any noise
standard deviation.

4. Construction of the Models

The CK coefficient values depend on the wavenum-
ber, the pressure, and the other thermodynamic con-
ditions. However, with the wavenumber and the
pressure being discretized with small steps, we felt
that simple local models for each wavenumber and
each pressure value would be more appropriate than
a large and complex model having to be valid in the
whole spectral and pressure domain. Thus, for each
quadrature point i, each wavenumber σ, and each
pressure value Ph, the relation

ðTh;XhÞ → CKσ
i;h

has to be fitted by a local model. The number of mod-
els is, hence, the number of CK coefficients; that is
164,934 today with the considered wavenumber
subset, and will be 20,241,900 in the future. The pro-
cedure has to be completely automated; it is not pos-
sible to prompt for a user choice at each model
construction.

A. General Framework

The construction of a model amounts to selecting an
accurate function among a given set of candidates.
The function sets considered here are polynomials
and neural networks. As a matter of fact, both are
universal approximators; a polynomial or a neural
network can approximate any function to a specified
accuracy, provided that the degree and the number of
monomials, or the number of neurons, is large en-
ough. However, a crucial issue that the algorithm
has to address is the choice of the whole structure;
for a polynomial, what should be its degree and
which monomials should it include? And for a neural
network, how many neurons should it contain?

When the whole structure is given, the model is
merely a function f ðx; θÞ with an input vector x ¼
ðtemperatureT; molecular mixing ratio vectorXÞ
and a parameter vector θ. The remaining question is
then, what value should the parameter vector θ take?
A part of the dataset, called the training set, is used
to compute a mean square error of the model, and the
parameter vector is estimated as the least squares
solution:

θls ¼ argminθ
X
ex

½yðexÞ − f ðxðexÞ; θÞÞ�2: ð3Þ

Once different structures have been trained, they
can be compared. But one cannot simply choose the
model with the smallest mean squared error on the
training examples. The latter best fits the examples
used to estimate its parameters, but it is not neces-
sarily the model that best fits the function, due to
overfitting. To detect overfitting, it is necessary to
measure the errors on examples that have not been

Fig. 2. A profile is a column above a given point on Earth at a
given time. In the database, it is represented at discrete levels
of the pressure, which determine a set of altitudes. The thermody-
namic representation includes, at each altitude, the value of the
temperature T and of the molecular mixing ratios vector X. The
optical representation includes, at the same altitudes, the CKi va-
lues ði ¼ 1;…; 17Þ for each wavenumber σ. The database climato
contains 4672 profiles.
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used to estimate the parameters. Thus, another set of
examples has to be considered, the validation set; it
is used to compare two models, the parameters of
which have been previously estimated with the train-
ing set.
Provided that a training set and a validation set

are available, an algorithm can run through different
model structures until an accurate one is encoun-
tered; for each structure, the parameters are taught
to fit the training examples and the resulting model
accuracy is then evaluated on the validation set. The
final model is the first accurate structure encoun-
tered (evaluated on the validation set) with the opti-
mal parameters (evaluated on the training set). Its
global performance can be estimated, but on neither
the training set, since it has been used to evaluate
the parameters, nor on the validation set, since it
has been used to select the structure. This is the rea-
son why a third set of examples is considered: the test
set. This set is not at all used in the algorithm that
builds the models. The test errors are only computed
at the end of the algorithm, in order to evaluate how
the final model fits the function. The initial dataset
is hence divided into three subsets; here they are
chosen of equal size.
The next paragraph introduces the main measures

of accuracy and the second paragraph describes the
algorithm that explores the model structures and
selects the final model.

B. Error Functions

For each CK coefficient and for each example ex, both
an absolute and a relative error can be computed:

2
4EðexÞ ¼ CKmodelðexÞ − CKrealðexÞ

REðexÞ ¼ CKmodelðexÞ−CKrealðexÞ
CKrealðexÞ

:

For a whole example set, these two errors can be de-
scribed both by their root mean squares (rMSE and
rMSRE) and by their maximum absolute values
(MXE and MXRE). Finally. the three example sets
lead to 12 error functions for a single model (Table 1).
The accuracy specified for the CK estimations de-

pends only on the first eight nonzero coefficients.
Therefore, the relative errors are computed with
the corresponding examples only. For each relation,
the mean relative errors are computed with the pro-
files for which the CK coefficient is one of the first
eight nonzero CK (i.e., larger than 10−12 cm−1). The
data being noiseless, these errors are representative
of the approximation errors and are reliable to decide
whether a model satisfies the specification or not; in

the procedure, the accuracy specification is fulfilled if
the model has either a rMSE in validation (rMSE-V)
of less than 10−12 cm−1 or a rMSRE in validation
(rMSRE-V) of less than 5%. Such a model is consid-
ered as accurate enough and, when encountered,
stops the procedure. The model comparison is done
via their mean square error in validation (MSE-V).

C. Modeling Procedure

1. Overview

The procedure follows the general scheme described
in [10] and shown in Fig. 3. After setting the candi-
date inputs—the temperature and the mixing ratios
of the molecules that are optically active at the con-
sidered wavenumber—it builds a polynomial model
with a small degree. This step is fast and results,
most of the time, in a sufficient model. If not, the pro-
cedure builds a neural network whose inputs are
those of the polynomial. This step is time consuming,
but it is performed only for the few most complex re-
lations, for which it is worth it. If the neural network
is accurate enough, it is chosen as the final model. If
not, that is, if neither the polynomial nor the neural
network fulfills the accuracy specification, both are
compared and the model with the lowest MSE-V is
selected as the final one.

The two next subsections detail the polynomial
and neural network construction.

2. Polynomial Construction

A polynomial structure is a set of monomials and its
parameters are their multiplicative coefficients. The

Table 1. Performance Measures

Error Type Training Set Validation Set Test Set

Root mean square error: rMSE rMSE-Tr rMSE-V rMSE-Ts
Max error: MXE MXE-Tr MXE-V MXE-Ts
Root mean square relative error: rMSRE rMSRE-Tr rMSRE-V rMSRE-Ts
Max relative error: MXRE MXRE-Tr MXRE-V MXRE-Ts

Fig. 3. General scheme of the modeling procedure.
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model depends linearly on these parameters and the
solution θls of Eq. (3) is given by the ordinary least
squares formula.
The remaining issue of the polynomial construc-

tion is to decide which monomials it should contain.
In the procedure, the maximum degree is set to 3, so
that the possible monomials consist of those depend-
ing on the candidate inputs and having an adequate
degree. Among these possible monomials, a selection
has to be done. To start with, the procedure reads the
desired output vector Yd, made of the training exam-
ple outputs, and computes the experience matrix X,
whose columns correspond to the possible monomials
and whose rows are the monomial values at the
training examples.
Then the procedure uses the Gram–Schmidt ortho-

gonalization [11] to rank the monomials in order of
their decreasing contribution to the output’s expla-
nation. First, the correlations of all the columns of
the matrix X with the output Yd are computed; the
most correlated column is placed in first position,
as well as the monomial it corresponds to. The re-
maining columns of the matrix X and the vector
Yd are then projected orthogonally to the first col-
umn, and the correlations of the resulting columns
to the resulting vector are computed. The most cor-
related column, as well as the corresponding mono-
mial, are placed in the second position. The same
computation is iterated until all the columns of the
matrix X and all the monomials have been sorted.
In the end, the matrix X is orthogonal; its columns
and the monomials are sorted according to their con-
tribution to the model performance. Thanks to the
orthogonal projections, this sorting eliminates the re-
dundancies; at each iteration, a column is ranked
and all the remaining ones are projected orthogon-
ally, so that the information they have in common
with the selected column is deleted before further
ranking. Thus, if two monomials contain redundant
information on the output, only one of them is ranked
at a good position.
The resulting rank defines a sequence f kðx; θÞ of

nested model structures, the first one being the con-
stant model, the second one including the constant
and the first monomial, and so on: let φkðxÞ denote
themonomial sorted at the position k; then themodel
f kðx; θÞ is

f kðx; θÞ ¼ θ0 þ
X
i≤k

θiφiðxÞ: ð4Þ

The final polynomial structure is an element of this
sequence and the remaining question is the choice of
the size k. The larger is k, the richer the model, but
also the higher the risk of overfitting.
To select it, the procedure increases it from 0 (the

model is a constant) to its maximum (the total num-
ber of possible monomials). For each value of k, the
parameters are estimated on the training set and the
accuracy on the validation set. The procedure stops
when the model f kðx; θlsÞ is accurate enough, or when

the mean square error in MSE-V is not lower than
with k − 1 monomials, or when k reaches its maxi-
mum. If the final polynomial model fulfills the accu-
racy specification, it is set as final model. If not, a
more complex one has to be considered and the pro-
cedure builds a neural network.

Polynomials are good approximators and their
training is fast, but when the number of inputs and
themaximumdegree increase, the number of possible
monomials grows drastically, resulting in very high
computation time and memory request. For instance,
with 15 inputs and a maximum degree of 3, the num-
ber of monomials is 816, but when the maximum de-
gree is set to 4, 5, or 6, the number of monomials goes
up to 3876, 15,504 or 54,264, respectively. Thus, when
small degree polynomials are not accurate enough,
they need to be replaced by models whose complexity
can be increased more gradually. In that case, neural
networks are introduced.

3. Neural Network Construction

The neural networks considered here are networks
with one hidden layer (Fig. 4). Each neuron i of
the hidden layer computes

"
Potential : Vi ¼ wi0 þ

P
j
wijxj

Output : Oi ¼ tanhðV1Þ
;

where wij is the weight of the connection from the in-
put j to the neuron i. The output of the network is
given by

O ¼ w0 þ
X
i

wiOi;

where the wi are the weights of the connections from
the hidden neurons to the output.

Only the inputs that were included in the final
polynomial model are fed to the neural network.
The neural network construction consists in setting
the number nhid of hidden neurons and the param-
eter vector θ whose components are the weights
wij and wi.

When the number nhid is defined, the model is a
function f ðx; θÞ of the input vector x and of the param-
eter vector θ. As for the polynomial models, the

Fig. 4. Neural network with one hidden layer.
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training phase consists in finding the θ value that
minimizes the square error on the training set, that
is, in solving Eq. (3). But, in this case, the network
output f ðx; θÞ is not linear with respect to the param-
eters and there is no direct formula for the optimal
θls. The latter has to be estimated with an iterative
procedure that is expected to converge to the
optimum. In this work, we use the Levenberg–
Marquardt algorithm, which, at each iteration,
makes a variation Δθ of the parameter that depends
on the gradient and on an approximation of the Hes-
sian of the square training error [12].
To set the hidden layer size nhid, the procedure op-

erates in a manner similar to that for the polynomial
size: it gradually increases nhid and, for each value,
estimates the least squares parameter θls on the
training set and the performance on the validation
set. The procedure stops when the model fulfills
the accuracy specification, or when the MSE-V is
not lower with nhid neurons than with nhid − 1, or
when a maximum value has been reached.
If the neural network is accurate enough, it is se-

lected as the final model. If not, its MSE-V is com-
pared to that of the polynomial, and the better of
the two is the final model.
As compared to polynomials, neural networks are

parsimonious; they can approximate complex func-
tions with fewer parameters. In brief, this property
is due to the fact that the basis elements (the neu-
rons) can be chosen in a nonlinear fashion [13,14].
Furthermore, the model complexity can be increased
more gradually: when the numbers of inputs and of
hidden neurons grow, the number of parameters
grows like their product and there is no gap as there
is when increasing the polynomial degree. But the
drawback is the large computation time needed for
the neural network training.

5. Results

The procedure described above has been applied
to the 198 wavenumbers, resulting in 198 ×
49pressure values × 17 CK coefficients ¼ 164; 934
models. This section describes them, in terms of ac-
curacy, size, and computation time.

A. Model Structure and Accuracy

For nearly two-thirds of the relations (102,185
among the 164,934), a constant model proves to be
sufficient. This is the case for the CK coefficients
whose values are always less than 10−12 cm−1 (as it
happens to be for the first CK coefficients at high
altitudes), and for the CK coefficients which, for
every example, have eight nonzero CK coefficient
before them.
Hence, there are 62,749 nontrivial relations left.

For only 33 of them, the procedure could not build
a sufficient model. For all the 62,716 other relations,
a model has been found with a rMSE-V set of less
than 10−12 cm−1 or with a rMSRE-V set of less than
5%. To be more precise, for 62,598 relations, the pro-
cedure has built a polynomial model fulfilling the

accuracy specification. Then, for the 151 other rela-
tions, the polynomial is not sufficient and the proce-
dure has built a neural network. In 118 cases, it
indeed succeeded in building a sufficient model
while, in 29 other cases, it built a model that is
not sufficient but still has better performance than
the polynomial. The remaining four models could
not be improved by a neural network (see Table 2).
All the polynomial models have been built in 24h
on a single computer (Dual Core AMD Opteron
2212 processor, 2; 000MHz). For the neural models,
one week on four similar computers was needed.

For the 62,749 nontrivial models, a rMSRE-Vand a
MXRE-V can be computed on the validation set.
Their means are 3.3% for the rMSRE-V and 18.1%
for the MXRE-V, and their distributions are plotted
in Fig. 5. The same indicators can be computed on the
test set. Their means equal 3.3% and 12.3%, respec-
tively, and their distributions are plotted in Fig. 6.

Computed on the validation or on the test set, the
distributions of the rMSRE are very similar; their
means are identical (3.3%) and their histograms
have the same shape (left part of Figs. 5 and 6). In
particular, a “threshold” value at 5% can be noted:
the root mean square error values under 5% are
much more numerous than those above 5%. For
the errors on the validation set, this is a direct con-
sequence of the building procedure; a model is suffi-
cient as soon as its rMSRE-V is less than 5%, so that
the procedure stops increasing the model complexity
as soon as the rMSRE-V reaches this threshold val-
ue. The fact that the same threshold also appears on
the test proves that the training and validation dis-
tributions are indeed representative of the overall
distribution.

However, theMXRE on the validation and test sets
are quite different. Their means are 18.1% and
12.3%, respectively (i.e., it is smaller on the test
set), and conversely, their maximum values are about
700% for the validation set and about 400% for the
test set. The distribution of the relative errors of
the 62,749 nontrivial models on all the 1557 test pro-
files has been plotted (see Fig. 7); 99.5% of the abso-
lute values are less than 20%, 97.7% are less than
10%, and 89.2% are less than 5%.

B. Model Size and Computation Time

Even for the nontrivial relations, the models are gen-
erally small: polynomials have a mean size of 2.4
monomials and the mean number of hidden neurons
equals 6 (Fig. 8).

Table 2. Model Structures and Performance

Fulfill Accuracy
Specifications

Do Not Fulfill
Accuracy

Specifications Total

Polynomials 62,598 4 62,602
Neural networks 118 29 147
Total 62,716 33 62,749
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The exact computation of the CK coefficients
with MATISSE for a profile, that is of
the 24; 300wavenumbers × 49pressure values ×
17 quadrature points ¼ 20; 241; 900 CK values, re-
quires 10 min. For a whole scene including 10,000
profiles, the computation would take about two
months and is, therefore, not feasible.
How long would it take if the regression models

were used instead of exact computations? Since
the modeling has not yet been done for all the
24,300 spectral values, but only for 198 of them, this
computation time can be estimated by computing the
CK coefficients at these 198 wavenumbers 24; 300=
198 ¼ 123 times. This assumes that the model sizes
are globally the same for the unseen wavenumbers.
Furthermore, it necessitates that the models are
appropriately loaded during the procedure.
As a matter of fact, it is not possible to consider

that all the models will be loaded simultaneously
in the program memory. Thus, they have to be

stored in the file system, and loaded by the pro-
gram when their use is requested. The file system
has been organized with one file per wave-
number, each file containing 49pressure values×
17 quadrature points ¼ 833models. The computa-
tion of a profile is done by, for each wavenumber:

1. loading the 833 models and
2. running these models.

When the models are used for a single profile,
the time devoted to the second step has been
measured as only 7% of the total time. This has
two practical consequences for the time estimation
procedure:

1. to be reliable, it must run the two steps:
for each of the 198 modeled wavenumbers, the
whole procedure (steps 1 and 2) has to be run
24; 300=198 ¼ 123 times, and

Fig. 5. (Color online) Histograms of the root mean square relative errors (left) and of the maximum relative errors (right) of the nontrivial
models, on the validation set.

Fig. 6. (Color online) Histograms of the root mean square relative errors (left) and of the maximum relative errors (right) of the nontrivial
models, on the test set.
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2. when the number npro of profiles is greater
than 1, it is important, once a model has been loaded,
to use it for all the profiles. Then, for each wave-
number, the first step is executed only once, and only
the second step is executed npro times. The time
needed to compute the npro profiles is less than
the product of npro by the time needed to compute
one profile.

This procedure has been executed on a computer
with a Dual Core AMD Opteron 2212 processor
(2; 000MHz). The time needed for the computation
of a single profile is estimated at 1 min 15 s, which
is to be compared with the 10 min needed for the ex-
act computation. For a whole 3D scene, that is, for
10,000 profiles, the computation time is estimated

at 16h, to be compared with the two months in
the case of exact CK computations; it is now concei-
vable to deal with such a scene.

6. Discussion

The first point we would like to discuss is the validity
domain of the models, which is basically the area of
the input space that is covered by the dataset. These
data have been built in order to explore the whole
region of interest; the geographical as well as the
time localizations run through all the latitudes
and periods of the year. Hence, most of the new ther-
mophysical profiles are likely to be close to some of
the learned ones. However, it is still possible, for a
new image made in a particular climate condition,
to have new profiles falling out of the domain. We

Fig. 7. (Color online) Histogram of the relative errors of the 62,749 nontrivial models on the 1557 test profiles. The left scale shows that
the high values very seldom do, but can reach 400%, while the right scale shows that most values (99.5% of them) are smaller than 20%.

Fig. 8. (Color online) Histogram of the numbers of monomials for the 62,602 polynomial models (left), and of the hidden layer sizes for the
147 neural models (right). The number of monomials has a mean of 2.4 and runs from 1 up to 50. The hidden layer size runs from 4 up to 10
with a mean value of 6.
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should, therefore, be able to detect this situation. A
first safeguard consists in storing, in addition to the
models, the minima and maxima of each input com-
ponent in the dataset. It is very easy and fast to com-
pare each new input vector to these values and to
detect when it is out of range. But the domain delim-
ited by these extrema is a hypercube that contains,
but is not, the validity domain. The latter is very dif-
ferent from a hypercube; it is not even convex, so that
only a part of the out-of-range profiles will be de-
tected this way. Another possibility is to compute a
confidence interval for the output. Its computation
is well known in the case of a polynomial, which is
linear with its parameters (see, for example, [15]),
and can be obtained in the case of a neural network
by using a linear Taylor expansion of the model out-
put [16]. It should be noted that the notion of confi-
dence interval is statistical and does not exactly
apply here, since the data are nonrandom. However,
it still has an intuitive signification and, also, the ap-
pealing property of getting larger and larger as the
new input vector goes away from the training do-
main. Thus, for each new input, it gives useful infor-
mation about the model validity. The computations
are then more time consuming (nearly 2 min for a
profile and two days for a whole 3D scene if the con-
fidence interval is computed for each model and each
profile), but are still much shorter than the exact
ones. The question to decide when the confidence in-
terval should be computed remains open.
A second point to discuss is the problem decompo-

sition that has been chosen: for a given wavenumber
and a given CK coefficient. A different local model
has been built for each of the 49 discrete values of
the pressure. Another option was to build a single
global model for all the altitudes, taking the pressure
as an additional input. In fact, this option has been
implemented, too, but the relations are much more
complex and the final models are, hence, very large;
most of them are polynomials with more than 40
monomials. When using them in the CK computa-
tion, the time devoted to run them on a profile, rela-
tive to the time requested to load and to run them,
enhances from 7% to 69%. The total time enhances
to 2 min 15 s for a single profile, and to nine days
for a whole 3D scene. This highlights the importance
of finding the good decomposition of a problem before
considering its modeling.
Finally, we would like to stress how useful the pre-

liminary work has been. First, a representative da-
taset has been built, which covers the domain on
which the models will be used. Second, thanks to a
sensitivity analysis of the MATISSE computations
to the CK accuracy, the required accuracy could be
defined. It has been found that only the first eight
nonzero CK coefficients have to be computed accu-
rately, allowing us to focus the effort on the most cru-
cial relations. And third, a good decomposition of the
problem had to be found.

7. Conclusion

The feasibility of fast emulation by linear and non-
linear regression of the exact computation of the
CK coefficients has been demonstrated. The imple-
mentation of the proposed procedure on a subset of
198 values of the wavenumber shows that a mean re-
lative error of 3.3% and a high reduction of the com-
putation time can be obtained: from 10 min down to 1
min 15 s, in the case of a single profile, and from two
months down to 16h in the case of 10,000 profiles. It
will, therefore, be possible to deal with 3D scenes
with inhomogeneous conditions, which was, up to
now, inconceivable.

The proposed procedure may be applied in many
other areas. As soon as a heavy numerical procedure
has to be repeated many times, its emulation by fast
regression models may be considered. The initial in-
vestment lies in a proper decomposition of the task to
be emulated, in the specification of the requested
accuracy, in the construction of a representative
dataset, and, finally, in themodel construction. If this
preliminary work is done properly, the investment
can be very rewarding, as illustrated by the perfor-
mance reported here.

This work has been financed by the Direction Gén-
érale de l’Armement / Direction des Systèmes
d’Armes / Unité de Management Naval.
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