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Abstract

Multistate neurones, a generalization of the popular McCulloch–Pitts binary neurones, are described; they are intended to
model the fact that neurones may be in several different states of activity, while McCulloch–Pitts neurones model two states
only: active or inactive. We show that as a consequence, multidimensional synapses are necessary to describe the dynamics
of the model. As an illustration, we show how to derive the parameters of formal multistate neurones and their associated
multidimensional synapses from simulations involving Hodgkin–Huxley neurones. Our approach opens the way to solve in a
more biologically plausible way, two problems that were addressed previously: (1) the resolution of ‘inverse problems’, i.e. the
construction of formal networks, whose dynamics follows a pre-defined spatio-temporal binary sequence, (2) the generation
of spatio-temporal patterns that reproduce exactly the ‘code’ extracted from experimental recordings (olfactory codes at the
glomerular level).
© 2004 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The present study is a step in the modeling of the re-
lations between the anatomical and biophysical struc-
ture of biological neural networks and their signal pro-
cessing and encoding function.More precisely, we sug-
gest a new tool that may bring a contribution to the fol-
lowing general question: what can we infer about the
connectivity of a neural network just by looking at the
neuronal activity? Answering that question quantita-
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tively amounts to solving an “inverse problem”, which
was addressed before (Quenet et al., 2000, 2002) by
making the drastic assumption that neurones can have
only two states of activity, hence can be modeled as
binary elements.
In a first step, that simplification allowed the compu-

tation of the appropriate synaptic weights such that the
resulting neural network exhibited precisely the spatio-
temporal experimentally recorded code1 (Quenet et al.,
2000). In a second step, a network of Hodgkin–Huxley

1 By “spatio-temporal pattern”, we mean the activity of a set
of neurones during a period of time. Such an activity can be
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(HH) spiking neurones having the connectivity derived
in the first step was simulated; it was shown that if (i)
an appropriate synchronization mechanism is imple-
mented, and if (ii) synaptic efficacies and delays are
appropriately defined, then the network of HH neu-
rones exhibits exactly the same spatio-temporal activ-
ities as the network of McCulloch–Pitts (McCulloch
and Pitts, 1943) (McCP) neurones defined in the pre-
vious step. This proves that the analytic construction
of networks of McCP neurones can serve as a guide
to more biologically relevant models, since HH neu-
rones can mimic, sometimes with a wealth of de-
tails (Mainen and Sejnowski, 1996; Santamaria et al.,
2002), the features and the activities of single biological
neurones.
Therefore, it can be conjectured that in order tomake

progress in the direction of solving inverse problems
with bio-inspired models, it would be useful to design
models of neurones that like binary neurones, have an-
alytically tractable dynamics, but unlike McCP neu-
rones, canmodelmore complexity. In the present paper,
we show how to extend McCP neurones to multistate
units with multidimensional synapses, which (i) can
take into account the fact that a neurone can have sev-
eral states of activity (e.g. can generate, zero, one or two
spikes in a given time interval, depending on the state
of its presynaptic neurones), and that (ii) can take into
account several types of synapses (e.g. involving differ-
ent neurotransmitters, or with different locations on the
dendritic tree) as well asmultiple contacts between two
neurones.
Finally, we show how to derive the states of the

multistate neurones, and the elements of the multi-
dimensional synapses, from simulations of HH neu-
rones. It constitutes also a step to bring together two
models of a neurone, a biologically plausible one,
the HH neurone and an analytically tractable one,
the McCP-like neurone, using an example of the for-
mer in order to define, in an ad hoc manner, the
latter.

experimentally recorded or computed, for biological or formal
neurons, respectively. If time bins can be defined, the number
of spikes emitted in each time bin by the recorded neurones
may be used to define a “spatio-temporal code” (see, for in-
stance, Wehrt et Laurent, 1994) that can be reproduced with dis-
crete time formal neurones, provided the resolution of an inverse
problem.

2. Direct and inverse problems in a network of
binary units

In the present section, we recall briefly the notations
that are used in the analysis of binary (McCP) neurones,
and we outline the resolution of inverse problems with
such model neurones.

2.1. The dynamic neural filter: a network of
McCulloch and Pitts binary units

In its deterministic version, a dynamic neural fil-
ter (Quenet and Horn, 2003; Quenet et al., 2000) is a
network of binary units with exogeneous inputs and ar-
bitrary connectivity, whose dynamics is defined in dis-
crete time. Let us consider a network of NMcCP units,
where the activity si(t) of each unit i, i ∈ {1,. . .,N}; at
discrete time t can be either 0 or 1. The general term of
the synaptic matrix W of the network is wij ∈ N, that
term corresponds to the weight of a single synaptic
contact from neurone j to neurone i. We consider here
a model, in which each neurone receives an external
inputRi ∈ N, the vector #R defined by theN coordinates
Ri is the input vector to the network. The dynamics of
the network is defined by:

hi(t) = Ri +
N

∑

j=1
wijsj (t − 1) (1)

hi(t) is the potential of neurone i at discrete time t and
sj(t− 1) the state of neurone j at time t− 1, which takes
its value in {0,1}.

si(t)H
(

hi(t)−
1
2

)

with H(x) =
{

1 if x > 0
0 otherwise

(2)

Such a network exhibits a discrete-time dynamics
whose major property is to respond to any stable input
#R with a spatio-temporal activity pattern: a sequence
of 0 and 1 for each neurone. Given an initial state of
the network, the binary spatio-temporal patterns evolve
towards a fixed point or toward a cycle whose length2

2 This length may become very large at the edge of chaos under
some conditions on W and #R (Gutfreund et al., 1988; Kliper et al.,
2003, in press).
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depends on the values ofW and #R. Ranking the neurone
activities in a row for each time step, a spatio-temporal
pattern of length T can be denoted a [(T+ 1)×N] ma-
trix P, whose general term Pti is the activity si(t) of
neurone i at time t: the first row of P is the initial state
of the network, i.e. at time t= 0, row (t+ 1) of P is the
state of the network at time t, and the column i is the
sequence of activity of neurone i.

2.2. Direct and inverse problems

The direct problem can be defined as follows: given
W and #R, what is the spatio-temporal behaviour of
the network, i.e. what pattern, or code, does it ex-
hibit as a response to the input #R? The coding prop-
erties of the DNF are described in (Quenet and Horn,
2003); it is shown that they are robust to synaptic
noise.
Given a matrix P of a spatio-temporal pattern, an in-

verse problem consists in findingW and #R such that the
network exhibits the activity described by matrix P.3
The conditions on the terms wij and Ri can be written
as N sets of T inequalities, one set per neurone; such an
inequality is given for time discrete t and neurone i in
Eq. (3).

(2Pti − 1)





N
∑

j=1
wijP(t−1)j + Ri



 > 0 (3)

3. Multidimensional synapses in a formal
multistate neural network

In the present section, a network of multistate neu-
rones with multidimensional synapses is defined as an
extension of the model neurones and synapses defined
above. The purpose of that extension is to model dif-
ferent states of activity of a neurone, while retaining
the topological equivalence of the states, which allows
addressing an inverse problem by solving sets of linear
inequalities.
Since the state of a McCP neurone is defined by a

scalar that can take on two values; a straightforward

3 The inverse problem was solved for several P-patterns in re-
sponse to several inputs to a given network (Quenet et al., 2002,
2000).

extension consists in encoding the state of the neurone
by a scalar that can take on K different values. Such
an approach, however, cannot be valid since the three
states are not topologically equivalent. In that repre-
sentation, state K is separated from state K+ 2 by state
K+ 1.
The standard way of achieving complete topolog-

ical equivalence of the states of a multi-state system
consists in using a one-out-of-K encoding; each state
of the system is represented in K-dimensional space as
a vector belonging to a basis of that space. Complete
topological and metric equivalence between the states
is achieved if the basis is orthonormal: state k of the
system is described as a vector, whose kth component
is equal to 1, all other components being equal to 0.
Equivalently, the state can be represented by a vector

in K− 1 dimensional space where the possible states
are described byK vectors, provided thatK− 1 vectors
provide a complete basis of K− 1 dimensional space.
The relation between the above representations is de-
scribed in Appendix 1.
As an example, the state of a three-state neurone

can be represented as one vector out of three vec-
tors #A, #B, #C in two-dimensional space, if two vec-
tors among the three possible vectors are not collinear.
Topological and metric equivalence of the states is
achieved if the three vectors #A, #B, #C have the same
length and are at 120◦ angular separation (Fig. 1). That
is identical to a three-state Potts neurone (Kanter, 1988;
Wu, 1982), butwith synapses defined in a very different
way.4
In that framework, the potential of formal neurone

i is a vector in K− 1 dimensional state, which is ob-
tained by a linear transformation of the vector states
of all presynaptic neurones: hence information transfer
between each pair of neurones {i, j} is described by a
(K− 1, K− 1) matrix Wij.
In the case of a three-state neurone, the potential of

the neurone is defined by

#hi(t) =
N

∑

j=1
Wij(#Sj(t − 1))+ #Ri (4)

4 Another three-state neuron has been described by Silverman,
Shaw and Pearson (Silverman et al., 1986), where these three states
are ranked on a one-dimensional space. In this model, the synapses
are scalar.
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Fig. 1. (a) A single dimension is sufficient to represent two independent states of a binary unit; they can be seen as a dumb-bell with one state at
each extremity. They are perfectly symmetric with respect to their centre of gravity. The membrane potential h is a one-dimensional object. (b)
A two-dimensional space is necessary to represent three states without any order relationship between them; the potential #h is a bidimensional
object.

#hi(t) is the potential of neurone i at discrete time t and
#Sj(t − 1) the state of neurone j at time (t− 1), which
takes its value in { #A, #B, #C}.
In the deterministic case, the state #Si(t) of neurone

i at time t is the state among { #A, #B, #C} that is closest
to #hi(t), since || #A|| = || #B|| = || #C||:

#si(t) = #A ⇔ #hi(t) #A > #hi(t)#B and #h(t) #A > #h(t)#C (5)

Similar conditions hold for #B and #C.
Given a [(T+ 1)×N] matrix P of a spatio-temporal

ternary pattern, solving an inverse problem consists

in finding a tensor W (of size 2× 2×N×N and gen-
eral term wab

ij ) and a matrix R (of size 2×N and gen-
eral term) such that the network exhibits the spatio-
temporal pattern defined by matrix P. The conditions
on the terms wab

ij and Ra
i can be written as N sets of

2T inequalities, one set per neurone; a couple of in-
equalities can be written for time t and neurone i. In
order to write these inequalities, it is necessary to as-
sign to #h some components in the two-dimensional
space, for instance, #h = h1 #B + h2 #C. Since #A · #B =
#B · #C + #A · #C = 1

2 || #A||2 and #h is defined by Eq. (4),
the conditions are given in Eq. (6).

If #Pti = #A



















N
∑

j=1

[

w11ij P1(t−1)j + w12ij P2(t−1)j

]

+ R1i < 0

N
∑

j=1

[

w21ij P1(t−1)j + w22ij P2(t−1)j

]

+ R2i < 0

if #Pti = #B



















N
∑

j=1

[

w11ij P1(t−1)j + w12ij P2(t−1)j

]

+ R1i > 0

N
∑

j=1

[

(w11ij − w21ij )P1(t−1)j + (w12ij − w22ij )P2(t−1)j
]

+ (R1i − R2i ) > 0

if #Pti = #C



















N
∑

j=1

[

(w21ij − w11ij )P1(t−1)j + (w22ij − w12ij )P2(t−1)j
]

+ (R2i − R1i ) > 0

N
∑

j=1

[

w21ij P1(t−1)j + w22ij P2(t−1)j

]

+ R2i > 0

(6)
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4. Modeling a Hodgkin–Huxley neurone as a
multistate neurone with multidimensional
synapses

Let us suppose that we want to reproduce neuronal
recordings that can be considered as a sequence of syn-
chronised three-state data. Applying the same strat-
egy as described for binary data, we take advantage
of the possibility of solving the inverse problem for a
McCP-like three-state neural network in order to de-
fine synaptic connections and inputs. Nevertheless, the
three neuronal states identified in some experimental
recordings are not necessarily in a symmetric config-
uration. It means that we need first to define appro-
priate McCP-like neurones before solving the inverse
problem for a network of such neurones. A HH model
of neurone exhibiting three types of activities may be
helpful. Indeed, it is possible to perform numerical
experiments on such a model, i.e. simulations with
the software NEURON, in order to build an ad hoc
three state McCP-like unit, where not only the states
must be defined and their components assigned, but
also the potential → hi and the two functions f1 and
f2 that describe respectively the potential-states rela-
tion (#h= f1(states), as in Eq. (4) and the state-potential
relation (#s = f2(potential), as in Eq. (5). We will de-
scribe how the three state McCP-like units can be de-
rived from numerical experiments performed on HH
neurones.

4.1. The Hodgkin–Huxley model

TheHHmodel considered here is made of two com-
partments: a soma and a dendrite where an inhibitory
synapse and an excitatory synapse are located; a dia-
gram of this neurone is represented in Fig. 2. Using the
NEURON software, this simplemodel was constructed
with aminimal number of ionic currents. The nonlinear
nature of calcium dynamics enable cells to generate a
wide repertoire of spatio-temporal patterns; therefore,
in addition to the somatic sodium and potassium cur-
rents, a low-threshold calcium current (T-current) and
themechanism for decay of internal calciumconcentra-
tion due to calcium currents and pumpwere introduced
in the somatic and dendritic membrane in order to fa-
cilitate the generation of double spikes (Destexhe et al.,
1998).

Fig. 2. The Hodgkin–Huxley formal neurone is made of two com-
partments: a somatic compartment and a dendritic one, which re-
ceives an inhibitory synapse and an excitatory one located in the
middle of the dendrite. A table with the values of the geometrical
and biophysical parameters is given in Appendix 2.

4.2. The synapses, delays and temporal
behaviours

The temporal evolution of the synaptic conduc-
tances are modeled by alpha functions with differ-
ent time constants for the inhibitory synapse and for
the excitatory one. The activity of such a unit is sim-
ulated with the software NEURON; the parameters
of the neuronal model are such that a typical be-
haviour of the model is indicated in Fig. 3 where
three types of activity appear: no spike, one spike
and two spikes. It is thus possible to define the three
states A, B and C that encode the generation of zero,

Fig. 3. As a response to a regular couple of external stimuli applied
with varying amplitudes to both the excitatory and the inhibitory
synapses, the typical temporal behaviour of the HH neurone de-
scribed in Fig. 2 exhibits three different patterns of activity that can
be considered as three different states; we assign state A to the state
were the neurone emits no spike as a response to a stimulus, state B
to the emission of a simple spike, and C to the emission of a double
spike. The definition of the states relies on a sampling of the contin-
uous time into bins: the activity of the HH neurone in each time bin
corresponds to the state of a McCP-like neurone updated at one time
step.
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Fig. 4. Alpha functions describing the temporal evolution of in-
hibitory and excitatory synaptic conductances. The corresponding
equation is (g= gmax (t/τ) exp(1−t/τ)) with τ = τIN and τEX, respec-
tively. The stimuli applied to the neurone are delayed in such a way
that the conductances reach their maxima simultaneously. The time
course of the synaptic conductances is smaller than the time bin
mentioned in Fig. 3.

one or two spikes in a given time bin.5 Such ac-
tivities are responses to short pulses (Dirac) applied
to each synapse with adapted delays such that the
peaks of the synaptic conductances occur simultane-
ously as indicated in Fig. 4; they depend on the val-
ues of the two activity-dependent quantities gINmax, and
gEXmax.
We define the ‘potential’ #h as the two-dimensional

vector whose components are the maximal synaptic
conductances:

#h =
(

gINmax
gEXmax

)

4.3. Numerical experiments

Having defined the states and the potential, we
show how simulations performed with the HH neu-

5 The formalism introduced here to describe a three-state neurone
can be extended to other behaviours than the triplet “no spike, one
spike, two spikes”: for instance, it is possible to introduce a bursting
state as one of such states. Our approach is useful to define the dy-
namics of a neural network with multistate neurones if these states
can be defined within short fixed time bins, which is not the case for
more complex neuronal behaviours like poissonian firing or oscilla-
tory firing for instance. Such long-term behaviours may emerge as
temporal patterns exhibited by some neurones in a multistate neural
networks.

rone can be used in order to define the dependence
of the potential of a McCP-like neurone on the state
of activity of the network (f1) and the dependence
of the state of this neurone on its potential (f2).
Since function f2 is easier to construct, we describe
it first.

4.3.1. Construction of the state of the neurone
from its potential (function f2)
The function we are looking for should assign

to any, i.e. to any couple of values (gINmax, gEXmax), a
state of the neurone, i.e. an activity as a response to
the presynaptic stimulus: no spike, one spike or two
spikes. The following numerical experiment was per-
formed: the number of spikes generated by the neu-
rone shown on Fig. 2 was recorded in response to
the simultaneously stimulation of both its excitatory
and its inhibitory synapses (Fig. 5), as a function of
the potential (gINmax, gEXmax); the results are displayed on
Table 1.
The number of spikes observed in the simulations

defines sub-regions of this potential space, clearly sep-
arated by linear boundaries, whose equations are of the
type gEXmax = m gINmax + θ.

Fig. 5. Schematic representation of the numerical experiments per-
formed with the HH neurone of Fig. 3 in order to define f2. By in-
crementing the weights of the inhibitory and the excitatory synapses
between a stimulating element (Stim) and the neurone, we modify
the conductances gINmax and gEXmax and we measure the effect of the
simultaneous input of both excitation and inhibition by looking at
the somatic response which is no spike (state A), one spike (state B)
or a double spike (state C). The results are given in Table 1.
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Table 1
Table of the state-potential relation for the HH neural model of Fig. 2

0 0.0032 0.0064 0.0096 0.0128 0.016 0.0192 0.0224 0.0256 0.0288 0.032 0.0352 0.0384 0.0416 0.0448 0.048 0.0512 0.0544

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0018 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0036 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0054 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0072 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.009 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0.0108 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0.0126 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
0.0144 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0.0162 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0.018 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0.0198 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0.0216 2 2 2 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0.0234 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0.0252 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0.027 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0.0288 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 0 0
0.0306 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0
0.0324 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.0342 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.036 2 2- 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.0378 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
0.0396 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
0.0414 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

On the horizontal axis, the value of the inhibitory maximal conductance gINmax is increased from 0 to 0.0644!S by steps of 0.0032, while on the
vertical axis, gEXmax is increased from zero to 0.0414!S, by steps of 0.0018 (a fixed excitatory additional input is applied to the neurone, which
corresponds to a maximal conductance of 0.0114!S). We observe here that the regions defined by the states of the neurone are separated by
linear boundaries.

In the present case, f2 can be expressed in the fol-
lowing way (Eq. (7)), with h1 = gINmax and h2 = gINmax:6

Ifh2 − mABh1 − θAB < 0 s = A (no spike)
Ifh2 − mABh1 − θAB > 0 and

h2 − mBCh1 − θBC < 0 s = B (1 spike)
Ifh2 − mBCh1 − θBC > 0 s = C (2 spikes)

(7)

The parameters of the boundary between re-
gions of data A and B are estimated to be
mAB = 0.56 and θAB = 0.0132!S; similarly, mBC = 1.02
and θBC = 0.0274!S.

4.3.2. Construction of the potential of the neurone
from the state of activity of the network (f1)
The function we are looking for should assign to

each state sj of neurone j, presynaptic to neurone i, a

6 Provided h1 and h2 are in the range of values defined by the
numerical experiments.

value of

#hij =
(

gINij max
gEXij max

)

,

due to the contribution of neurone j to the potential of
neurone i. According to Eq. (4), such a contribution can
be written as indicated in Eq. (8).7

#hij =
(

gINij max
gEXij max

)

= Wij#sj

(

w11ij w12ij

w21ij w22ij

) (

xs
j

ys
j

)

=
(

w11ij xs
j + w12ij ys

j

w21ij xs
j + w22ij ys

j

)

(8)

7 Time is not included in this equation, as we look for a relation-
ship, which is time-independent. Nevertheless, when this potential-
state relation is a part of the updating rules, time appears in the states,
as in Eq. (4).



28 B. Quenet et al. / BioSystems 79 (2005) 21–32

where the components

(

xs
j

ys
j

)

of state sj, are
(

xA
j

yA
j

)

,

(

xB
j

yB
j

)

or

(

xC
j

yC
j

)

. Since synaptic conduc-

tances add, we can consider that the potential #ht at the
level of neurone i is the sum of the contributions of all
presynaptic neurones j, and of an external stimulus #Ri:

#hi =
N

∑

j=1

#hij + #Ri. (9)

Let us assume that neurone j has two types of synap-
tic contacts on neurone i8: one inhibitory synapse with
weight GIN

ij and one excitatory synapse with weight
GEX

ij , where these weights are the maximal conduc-
tance of the synpases when they are activated by a sin-
gle presynaptic spike. We are looking for a relation
between the elements of the formal multidimensional
synapseWij and the weightsGIN

ij andGEX
ij . Such a rela-

tion depends on the values of the components assigned
to states A, B and C; the latter are still to be defined.
In other words, if we want to derive the contribution
of neurone j to the potential of neurone i in Eq. (9),
we need to estimate the values of 10 unknown quan-
tities: the 3× 2 components of the states and the four
components of themultidimensional synapse. They can
be estimated from numerical experiments as follows: a
stimulus that mimics9 a presynaptic state A, B orC, can
be generated, and its effect on the values of the poten-
tial (gINmax, gEXmax) of a postsynaptic HH neurone can be
computed for different values ofGIN andGEX (Fig. 6).
When the stimulating element is silent (state A),

whatever the value of GIN (respectivelyGEX) the value
of gINmax(0) is 0 (respectively gEXmax(0) is 0). In this case,

8 Although this assumptionmay seem unorthodox, the formalism
introduced here can include the case of multiple synaptic contacts
between two neurones, which may be of opposite signs (i.e., ex-
citatory and inhibitory). Some recent experimental results seem to
support the existence of such complex neuronal interactions (Chavas
and Marty (2003).

9 It is also possible to perform simulations where the presynaptic
stimulus comes from another HH neurone, however, in so far as
the interspike interval of state C is the same, the results of such
simulations are similar to those obtained with the “Stim” elements,
which mimics such a presynaptic neurone.

Eq. (8) becomes Eq. (10)10

(

gINmax(0)
gEXmax(0)

)

=
(

w11xA + w12yA

w21xA + w22yA

)

=
(

0
0

)

∀w11, w12, w21, w22 (10)

Eq. (12) is trivially verified if we choose the compo-
nents of state A to be zero:
(

xA

yA

)

=
(

0
0

)

.

When the stimulating element emits one spike (state
B), by definition, for each value of GIN (respectively
GEX) the value of gINmax(1) is GIN (respectively gEXmax(1)
is GEX). In this case, Eq. (10) becomes Eq. (11)
(

gINmax(1)
gEXmax(1)

)

=
(

w11xB + w12yB

w21xB + w22yB

)

=
(

GIN

GEX

)

(11)

If we assign arbitrarily to state B, the following com-
ponents:
(

xB

yB

)

=
(

0
0

)

Eq. (11) becomes:
(

w11

w21

)

=
(

GIN

GEX

)

(12)

We still have two unknown quantities for the multidi-
mensional synapseW: w12 and w22, and two unknown
quantities for the components of state C.
When the stimulating element emits two spikes

(state C), we measure the values of gINmax(2) for some
values of GIN and the values of gEXmax(2) for some val-
ues of GEX. The results of these experiments are dis-
played on Fig. 7, which shows that gINmax(2) (respec-
tively gEXmax(2)) is a linear function ofGIN (resp. ofGEX)
with a slope αIN = 1.98 (resp. αEX = 1.58).

10 The subscripts i and j have been dropped from the equations,
as i represents the HH neurone and j the stimulating element. The
formal multidimensional synapse from this element to the neurone
isW.
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Fig. 6. Schematic representation of the numerical experiments performed on HH neurones in order to define f1. By changing the state of the
Stim element (0, 1 or 2 spikes) and the weights of the inhibitory and the excitatory synapses between it and the neurone, we measure the effects
of these changes at the level of the maximal conductances gINmax(0,1 or 2) and gEXmax(0, 1 or 2) (0 not shown). These experiments are performed
on the inhibitory synapse (a) and on the excitatory synapse (b) independently.

Fig. 7. When the Stim element generates a double spike, the value of gINmax varies linearly with the value of GIN (a) (idem for gEXmax and GEX).
The slope is αIN=1.98 for the inhibitory synapse and αEX = 1.58 for the excitatory one. (The unit of the x- and y-axes is !S; the scales for GIN
and GEX are those of Table 1).

In this case, Eq. (8) becomes Eq. (13)11
(

gINmax(2)
gEXmax(2)

)

=
(

GINxC + w12yC

GEXxC + w23yC

)

=
(

αINGIN

αEXGEX

)

∀GIN, GEX (13)

We have four unknown values for two equations, so
that we can choose two of them arbitrarily. Once again,

let us choose the components of state C as:

(

xC

yC

)

=
(

0
1

)

. Then Eq. (13) becomes Eq. (14):

(

gINmax(2)
gEXmax(2)

)

=
(

w12

w22

)

=
(

αINGIN

αEXGEX

)

(14)

11 ProvidedGIN andGEX are taken in appropriate intervals (Table
1).

From those numerical experiments, the potential of the
neurone can be written down explicitly as a function f1
of the state of activity of the network:

#hi =
(

h1i
h2i

)

=
(

gINI max
gEXI max

)

=
N

∑

j=1
wij#sj + #Ri

=
N

∑

j=1

(

GIN
ij αINGIN

ij

GEX
ij αEXGEX

ij

) (

xs
j

ys
j

)

+
(

R1i
R2i

)

(15)

with

(

xA

yA

)

=
(

0
0

)

,

(

xB

yB

)

=
(

1
0

)

and

(

xC

yC

)

=
(

0
1

)

. Eq. (15) describes the relation between the

formal multidimensional synapse Wij and the synaptic
weights of the inhibitory and excitatory connections,
given the formal definition of states A, B and C.
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5. Generalisation of multidimensional synapses
to multisynaptic contacts

The above analysis can be generalized in two re-
spects: one can consider that the neurone exhibits K
different states, and that there are L synaptic contact
types between two neurones.12 We define the potential
#h, as being a vector whose length is L, with each of
its components corresponding to the maximal conduc-
tance of a synaptic type.
Numerical experiments with such a neurone allow,

in principle,13 a mapping of the K states of the post-
synaptic neurone as a function of the L values of the
maximal synaptic conductances. If the boundaries be-
tween regions are linear, i.e. hyperplanes of maximal
dimensions L− 1, function f2 is simply defined by in-
equalities as in Eq. (7).
Let us assign to the K states, E0, E1. . ., EK−1, the

following components in a K− 1-dimensional space:
the mth component of state Ek is ek

m = δmk, where
δmk is the Kronecker symbol and m ∈ {1, . . . K −
1}, k ∈ {0, . . . K − 1}, which means that all the com-
ponents of E0 are zero (silent state), and the only non-
zero component of Ek is ek

k = 1. In such a case,Wij is a
L× (K− 1) multidimensional synapse whose general
term is given in Eq. (16)

wkl
ij = αl

kG
l
ij k ∈ {1, . . . , K − 1}, l ∈ {1, . . . , L}

(16)

where αl
1 = 1∀l, and αl

k = k ∈ {2, . . . , K − 1} is the
ratio of the maximal conductance measured at synapse
type lwhen the presynaptic neurone is in state k and the
maximal conductance of that synapse when the presy-
naptic neurone is in state 1 (which is, by definition, the
weight of the synapse). In other words, each term of
theWij multidimensional synapse is a synaptic weight,
weighted itself by the influence of the state of the presy-
naptic neurone on this synapse.

12 By a “synaptic contact type”, we mean a synapse characterised
by its effect (excitatory or inhibitory), its dynamics (time constant of
an alpha function for instance) and its location with respect to the
soma of the post-synaptic neurone. Several contacts of the same type
simply sum up their weights.
13 At least, it is possible theoretically, and practically, if L is not

too large to get a map of the states as a function of the maximal
synaptic conductances.

6. Conclusion

In an effort towards more insightful mathematical
modeling of neurones and networks, discrete-timemul-
tistate formal neurones andmultidimensional synapses
have been defined. The purpose of that approach is to
gain biological plausibility while retaining the mathe-
matical simplicity ofMcCP neurones; that is especially
useful when attempting to solve inverse problems, i.e.
to infer quantitative hypotheses on the network and its
structure from the observation of the activity of a frac-
tion of its neurones.
The multiple states of a neurone can be defined in

many different ways: in the present paper, we consid-
ered three-state neurones, whose states were “silent”,
“one spike per time bin” and “two spikes per time bin”.
Other state definitions can be investigated.
In that framework, the potential of a K-state neu-

rone is a vector in (K− 1)-dimensional space, which
is obtained as a linear transformation, defined by the
multidimensional synapses, of the state vector of the
neurone; therefore, a synapse between two neurones is
no longer defined by a scalar (its efficacy), but by a ma-
trix (hence the term “multidimensional synapse”). That
makes modeling very flexible; for instance, the exis-
tence ofmultiple synapses between two given neurones
can be taken into account in a model: different types
of neurotransmitter, different effects (excitatory or in-
hibitory) and different locations in the dendritic tree.
As an illustration, we have shown how states and

potentials can be defined in that framework, from sim-
ulations of “realistic” (HH) neurones; they can be de-
fined similarly from experimental measurements, pro-
vided the values of the relevant quantities are available.
We have shown how the potential can be derived once
the states are defined: in the example addressed in the
present paper, the formal potential is defined as the vec-
tor of the maximum synaptic conductances. Thus, the
results reported here can be expected to open the way
to more biologically plausible approaches, within the
framework of discrete-time modeling with analytically
tractable model neurones.

Appendix A

We show that the state of a K-state neurone can be
represented as one among K vectors in K− 1 dimen-
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sional space is equivalent to a one-out-of-K represen-
tation in K-dimensional space.
Consider a K-state system described by one vector

out of K linearly independent vectors X1, X2, . . ., XK.
In K-dimensional affine space, the equation of a hyper-
plane can be written as:

nX + 1 = 0,

where n is a vector normal to the hyperplane.
If the end points of vectors X1, X2, . . ., XK, belong

to that hyperplane, then the following set of K linear
equations hold:

nX1 = n · X2 = · · · = nXk = −1

The solution of that set of equations, i.e. the K com-
ponents of vector n, exists since vectors Xi are as-
sumed to be linearly independent. The orthogonal pro-
jection of Yi ofXi onto the hyperplane is given by:Yi =
Xi − Xin

‖n ‖
n

‖n ‖ = Xi + n
‖n ‖2 .

Example 1. The state of a two-state systemcanbe rep-
resented in two-dimensional state by one of the vectors:

X1 =
(

1
0

)

and

(

0
1

)

Then

n =
(

−1
−1

)

, Y 1=
(

1/2
−1/2

)

and Y 2=
(

−1/2
+1/2

)

Since Y1 and Y2 are collinear and opposite, the state of
the system can represented in one-dimensional space
as one of two scalars, e.g. +1 and −1, as usual in a
McCP neurone.

Example 2. The state of a three-state system can be
represented in three-dimensional space by one of the
vectors:

X1 =







1
0
0






, X2 =







0
1
0






, and X3 =







0
0
1






.

Then

n =







−1
−1
−1






, Y 1 =







2/3
−1/3
−1/3






,

Y 2 =







−1/3
2/3
−1/3






and Y 3 =







−1/3
−1/3
2/3






.

The three vectors have the same module and sum to
zero, hence define a two-dimensional subspace and
have angular separations of 2"/3 radians.

Appendix B

Hodgkin–Huxley neurones constructed with NEU-
RON

Geometry
Soma Diameter 30!m

Length 30!m
Surface area 2826!m2

Dendrite Diameter 2!m
Length 100!m
Surface area 628!m2

Biophysics
Soma Dendrite

Membrane
conductance (pas)
1/Rm (S/cm2)

0.0003 0.0001

Axial Resistance (Ra)
ohm cm

30 30

Membrane
capacitance Cm
(!F/cm2)

1 1

Resting potential (mV) −59 −70
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Ionic conductances
Na+

Equilibrium potential = 45 (mV)
Maximal conductance (gmax) = 0.34 (uS)

K+

Equilibrium potential =−70 (mV)
Maximal conductance (gmax) = 0.1 (uS)

Ca+

Equilibrium potential = 120 (mV)
Maximal conductance (gmax) = 0.0002 (uS)

T-type (low-threshold) calcium current and intracel-
lular calcium dynamics were used according to mod-
elled mechanisms from NEURON (Destexhe et al.,
1998)

Synpases (alpha function) Excitatory
synapse

Inhibitory
synapses

Equilibrium
Potentiel (e)
(mV)

45 −90

Maximal
Conductance
(gmax) (uS)

0.0055 0.0022

Time constant (tau) (ms) 2 20
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