
Neural Computation 16: 401-418 (2004).

Jacobian conditioning analysis for model validation

Isabelle Rivals and Léon Personnaz

Équipe de Statistique Appliquée

École Supérieure de Physique et de Chimie Industrielles

10, rue Vauquelin - F75005 Paris, FRANCE

E-mail: Isabelle.Rivals@espci.fr, Leon.Personnaz@espci.fr

Abstract

Our aim is to stress the importance of Jacobian matrix conditioning for model

validation. We also comment (Monari and Dreyfus, 2002) where, following

(Rivals and Personnaz, 2000), it is proposed to discard neural candidates

which are likely to overfit, and/or for which quantities of interest such as

confidence intervals cannot be computed accurately. In (Rivals and

Personnaz, 2000), we argued that such models are to be discarded on the

basis of the condition number of their Jacobian matrix. But (Monari and

Dreyfus, 2002) suggest to take the decision on the basis of the computed

values of the leverages, the diagonal elements of the projection matrix on the

range of the Jacobian, or “hat” matrix: they propose to discard a model if

computed leverages are outside some theoretical bounds, pretending that it is

the symptom of the Jacobian rank deficiency.

We question this proposition because, theoretically, the hat matrix is defined

whatever the rank of the Jacobian, and because, in practice, the computed

leverages of very ill-conditioned networks may respect their theoretical

bounds while confidence intervals cannot be estimated accurately enough,

two facts that have escaped Monari and Dreyfus's attention. We also recall

the most accurate way to estimate the leverages and the properties of these

estimations.

Finally, we make an additional comment concerning the performance

estimation in (Monari and Dreyfus, 2002).

Key-Words

Condition number, confidence interval, hat matrix, Jacobian matrix, leave-one-

out cross-validation, leverages computation, model validation, neural

network, overfitting, QR decomposition, singular value decomposition.

2

1. On the Jacobian matrix of a nonlinear model

We deal with the modeling of processes having a certain n-input vector

x = [x1 x2 … xn]T and a measured scalar output y. We assume that, for any

fixed value xa of x:

ya = m(xa) + wa (1)

where m is the regression function, and wa is a random variable with zero

expectation. A training set {xk, yk}k=1 to N is available. The goal is to validate a

set of candidate models approximating the regression as accurately as

possible, and well conditioned enough for a meaningful estimation of a

confidence interval.

1.1. Theoretical results

We consider a family of parameterized functions � = {f(x, q), x��n, q��q}

implemented by a neural network. A least squares estimate qLS of the

parameters minimizes the quadratic cost function:

J(q) = 1
2

 yk – f(xk, q) 2∑
k=1

N

(2)

The Jacobian matrix Z of the model with parameter qLS plays an important

role in the statistical properties of least squares estimation. It is defined as

the (N,q) matrix with elements:

zki =
∂f(xk, q)

∂qi

q=qLS

(3)

If � contains the regression, if Z is full rank, and if the noise w is

homoscedastic with variance l, an estimate of the (1 – a)% confidence

interval for the regression for any input xa is asymptotically given by:

 f(xa, qLS) ± g(a) s z a T Z T Z
-1

 za (4)

with z a = ∂f(xa,q)/∂q q=qLS, where the function g denotes the inverse of the

gaussian cumulative distribution, and where s 2 = (ek)2
∑
k=1

N
/(N – q) with

ek = yk – f(xk, qLS) denoting the k-th residual.

In (Rivals and Personnaz, 2000), we further showed that, whatever �, if Z is

full rank, the k-th leave-one-out error e(k)
k can be approximated with:

e(k)
k � ek

1 – hkk
 for k=1 to N (5)

where the leverages {hkk} are the diagonal elements of the orthogonal

projection matrix on the range of Z, the “hat” matrix H = Z ZI. The matrix Z

being full rank, we have H = Z (ZT Z)-1 ZT.

Like any orthogonal projection matrix, its diagonal elements verify:

0 ≤ hkk ≤ 1 for k=1 to N (6)

For a linear as well as for a non linear model, a leverage value measures the

3

influence of the corresponding example on the parameter estimate qLS. In

practice, a leverage value larger than 0.5 is considered to indicate a very

influent example. For a model linear in its parameters, relation (5) is an

equality. The case hkk = 1 implies ek = 0, and e(k)
k is not determined. But

conversely, ek = 0 does not imply hkk = 1, and a small residual does not

necessarily correspond to a leverage close to one. For a non linear model, (5)

being only an approximation, hkk = 1 does not imply that the corresponding

residual is zero, nor among the smallest residual values.

Another property of the diagonal elements of a projection matrix is:

trace(H) = hkk∑
k=1

N

 = rank(Z) (7)

The results (4) and (5) assume that rank(Z) = q, the number of parameters of

the neural network. If rank(Z) < q, this means that some parameters are

useless, i.e. that the model is unnecessarily complex given the training set.

Thus, models such that rank(Z) < q should be discarded. However, note that

if rank(Z) < q, the hat matrix and hence the leverages are still defined (see

Appendix 1), and verify (6) and (7). Theoretically, if rank(Z) < q, at least one

of Z's singular values is zero (see Appendix 1).

1.2. Numerical considerations

In practice, it is difficult to make a statement about the rank deficiency of Z.

As a matter of fact, though there exist efficient algorithms for the estimation

of the singular values (Golub and Reinsch, 1970) (Anderson et al., 1999),

these algorithms do generally not lead to zero singular values, except in very

particular cases. Thus, the notion of the rank of Z is not usable in order to

take the decision to discard a model.

A decision should rather be taken on the basis of whether or not the inverse

of ZT Z needed for the estimation of a confidence interval can be estimated

accurately. The most accurate estimation is performed using Z's singular value

decomposition (SVD) Z = U S VT, rather than using the Cholesky or LU

decompositions of ZT Z, or the QR decomposition of Z (Golub and Van

Loan, 1983). We denote by U , V, and {si} the computed versions of U, V,

and of the singular values {si} obtained with a Golub-Reinsch like SVD

algorithm (used by Linpack, Lapack, Matlab, etc.). According to Appendix 1,

one obtains the computed version of (ZT Z)-1 using:

Z T Z
-1

 = V ST S
-1

 V
T
 with

ST S
-1

ii = 1
si

2
 for i=1 to q

ST S
-1

ij = 0 �i≠j

(8)

The question is how to detect whether (8) is accurate or not.

The absolute error on the i-th singular value is bounded by (Golub and Van

4

Loan, 1983):

| si – si | ≤ s1 e for i=1 to q (9)

where e is the computer unit roundoff (e � 10-16 for usual computers). The

relative error on the smallest singular value is hence bounded by:

sq – sq

sq
 ≤ s1

sq
 e = k(Z) e (10)

It is directly related to the condition number k(Z) of Z, the ratio of its largest

to its smallest singular value. When k(Z) reaches 1/e = 1016, the relative error

on the smallest singular value may be 100%. Since (8) involves the inverse of

the squared Jacobian, and hence the inverse of the computed squared singular

values, neural candidates with k(Z) > 108 should be discarded, as

recommended in (Rivals and Personnaz, 2000).

If k(Z) << 108, one can compute (ZT Z)-1 with a good precision using (8).

Moreover, according to the error bound (10), for a network with k(Z) ≤ 108,

the relative precision on the smallest singular value sq is smaller than 10-8,

and it is even smaller for the other singular values. The precision on k(Z)

itself is hence excellent when k(Z) ≤ 108.

According to (9), it makes sense to estimate r = rank(Z), if needed, as the

number of computed singular values that are larger than the threshold s1 e :

r = card {si > s1 e, i=1 to q} (11)

However, the decision to discard a network should not be based on r, because

one may have r = q while k(Z) > 108, and hence while (ZT Z)-1 is inaccurate.

When r = q, one could think of computing the leverages using (8), since

H = Z (ZT Z)-1 ZT. However, as mentioned in (Rivals and Personnaz, 2000), it

is better to use (see Appendix 1):

hkk(R&P) = uki
2∑

i=1

r

 for k=1 to N (12)

where r is computed with (11). As opposed to (8), expression (12) does not

involve the inverse of the square of possibly inaccurate small singular values.

The leverages computed with (12) are hence less sensitive to the ill-

conditioning of Z than (ZT Z)-1 computed with (8).

However, we must consider the error on q first columns of U which span the

range of Z. Let Uq denote the matrix of the q first columns of U. The angle

between the range of Uq and that of its computed version Uq (see Appendix

1) is approximately bounded by (Anderson et al., 1999):

angle R(Uq), R(Uq) ≤ s1 e
minj≠i si – sj

(13)

Thus, even if a model is very ill-conditioned, as long as the singular values of

its Jacobian are not too close to one another, the leverages can be computed

accurately with (12).

5

It can also be shown that U is quasi orthogonal (Golub and Van Loan, 1983):

U = W + ∆W with WTW = W WT = IN and �∆W�2 ≤ e (14)

where IN denotes the identity matrix of order N. Thus, for leverage values

obtained with (12), even if U is not an accurate version of U, the relations (6)

and (7) are satisfied to roughly unit roundoff1.

Note that if one is only interested in the leverages, they can be computed as

accurately using the QR decomposition as with (12) (Dongarra et al., 1979)

(see Appendix 1). The advantage is that the QR decomposition demands far

less computations than SVD.

2. Comment for the proposition of (Monari and Dreyfus, 2002)

Monari and Dreyfus do not consider the notion of condition number, but

focus on the values of the leverages. They choose to discard a model when

the relations (6) and (7) are not satisfied for the computed values of its

leverages. There are two problems with this proposition:

a) Property (7) is an equality, but Monari and Dreyfus do not specify a

numerical threshold that could be used in order to take a decision. There is

a similar problem with (6).

b) Instead of using (12), Monari and Dreyfus compute the leverages

according to:

hkk(M&D) = 1
si

 zkj∑
j=1

q

 vji

2

∑
i=1

q

 for k=1 to N (15)

equation (A.4) in (Monari and Dreyfus, 2002). This equation (A.4) is

derived from the expression Z V (ST S)-1 VT ZT of the hat matrix if Z if full

rank, expression which is, strangely enough, obtained by using the SVD of

Z for (ZT Z)-1 (expression A5 of the present paper), but not for Z itself.

Whereas the computed values of the leverages using (12) are accurate

provided the singular values are not to close (property (13)) and always

satisfy (6) and (7) to unit roundoff (property (14)), there is no such result

concerning the computed values obtained with (15).

1 Proof that (6) is satisfied to unit roundoff:

hkk(R&P) = uki
2∑

i=1

r

 ≤ uki
2∑

i=1

N

 = 1 to unit roundoff

Proof that (7) is satisfied to unit roundoff:

hkk(R&P)∑
k=1

N

 = trace Uq Uq
T

 = trace Uq
T
 Uq = r to unit roundoff

6

This has the following consequences:

a) Assuming that a consistent threshold were specified for (6) and (7),

because the leverages computed with (15) may be inaccurate, models well

enough conditioned for the accurate estimation of confidence intervals may

wrongly be discarded.

b) Conversely, in the case of models whose Jacobian Z is ill-conditioned, the

leverages computed with (15) (and a fortiori with (12)) may satisfy (6)

and (7), and hence the corresponding models may not be discarded, while

confidence intervals are meaningless.

In the next section, these consequences are illustrated with numerical

examples.

3. Numerical examples

3.1. Accuracy of the leverages computed with (12) and (15)

We construct a (N,2) matrix Z such that its condition number can be adjusted

by tuning a parameter a, while the range of Z does not depend on the value of

a:

Z = 1 1 + a c =

1 1 + a c1

.

.
.
.

1 1 + a cN

(16)

where the {ck} are realizations of gaussian random variables (see the Matlab

program given in Appendix 2). For a given c, R(Z) = span(1, c) and hence the

true leverages {hkk} have the same values � a ≠ 0. As an example, for a single

realization of Z, with N = 4, and a = 10-12, we obtain the results reproduced

in Appendix 2. In order to give statistically significant results, we performed

10 000 realizations of the matrix Z. Table 1 displays averaged results.

a k(Z) r – hkk(R&P)∑
k=1

N

 q – hkk(M&D)∑
k=1

N

10-6 3.2154 106 3.7881 10-16 1.2029 10-10

10-8 3.2154 108 1.8516 10-16 1.2316 10-8

10-12 3.2154 1012 1.8443 10-16 1.2213 10-4

10-15 Inf 1.5901 10-16 –

Table 1. Estimation of the leverages with formula (12) ({hkk(R&P)}) and

formula (15) ({hkk(M&D)}).

When using (12), the computed values {hkk(R&P)} satisfy (6) and their sum

satisfies (7) to roughly unit roundoff for values of k(Z) up to 1016: as a

7

matter of fact, this is ensured by property (14) of the estimate U. Moreover,

according to property (13), since s1 – s2 � 2.8 �a, the values of the

{hkk(R&P)} themselves are accurate.

When using (15), the sum of the {hkk(M&D)} by far does not satisfy (7) to unit

roundoff even when Z is well-conditioned. The {hkk(M&D)} may also not

satisfy (6) whereas the {hkk(R&P)} always do (run the program of Appendix 2

with a = 10-15).

This example illustrates the lower accuracy of (15) with respect to (12). If

the values of leverages are central to a given procedure, they definitely should

be computed according to (12). The results are similar for any N and any

vector c, as well as for Jacobian matrices of real life problems2.

3.2. Neural modeling

We consider a single input process simulated with:

yk = sinc 10 (xk + 1) + wk for k=1 to N (17)

where “sinc” denotes the cardinal sine function, and N = 50. The noise values

{wk} are drawn from a gaussian distribution with variance l = 2 10-3, and the

input values {xk} from an uniform distribution in [–1; 1].

Neural models with one layer of nh “tanh” hidden neurons and a linear output

neuron are considered, except the network without hidden neurons which

consists of a single linear neuron. They are trained 50 times using a quasi-

Newton algorithm starting from different small random initial parameters

values, in order to increase the chance to reach an absolute minimum; the

parameters corresponding to the lowest value of the cost function (2) are

kept. The corresponding Mean Square Training Error is denoted by MSTE.

The Approximate Leave One Out Score computed with (5) and (12) is

denoted by ALOOS. The ALOOS is to be compared to a better, unbiased

estimate of the performance computed on an independent test set of 500

examples drawn from the same distribution as the training set (such a test set

is usually not available in real life), the MSPE.

The simulations are programmed in the C language. The SVD decomposition

is performed with the Numerical Recipes routine “svdcmp” (Press et al.

2002), but in double precision. The leverages {hkk(M&D)} (15) and the

{hkk(R&P)} (12) are then computed like in the Matlab program given in

Appendix 2. The results obtained are shown in Table 2.

2 The economic QR decomposition of Z can also be used (see Appendix 1):

the values computed with (A13) do not differ from those computed with (12)

by more than roughly the computer unit roundoff (check with the Matlab

program of Appendix 2).

8

nh MSTE ALOOS MSPE k(Z)

0 3.699 10-2 4.136 10-2 7.039 10-2 1.8

1 9.506 10-3 1.144 10-2 1.083 10-2 6.7 102

2 3.181 10-3 4.831 10-3 6.866 10-3 8.4 102

3 2.153 10-3 4.039 10-3 4.783 10-3 2.1 109

4 1.888 10-3 5.316 10-7 4.436 10-3 9.0 109

Table 2. Training of neural models with an increasing number nh of hidden

neurons. The rows corresponding to k(Z) > 108 (ill-conditioned networks)

are shaded.

The outputs and the residuals of the networks with 2 and 3 hidden neurons

are shown on Figures 1 and 2 respectively. Though the model with 3 hidden

neurons has a slightly lower MSPE than the network with 2, it is unreliable in

the sense that one is unable to estimate correct confidence intervals for the

regression with this network: computing Z T Z
-1

 with (8) and multiplying it

by ZT Z leads to a matrix that differs significantly from the identity matrix

(by more than 2 for some of its elements). Fortunately, following (Rivals and

Personnaz, 2000), we can discard this network right away on the basis of its

too large condition number.

But, suppose that k(Z) is ignored, and that, following (Monari and Dreyfus,

2002), only the computed leverage values are considered. The results

obtained with (12) and (15) are given in Table 3.

nh max hkk(R&P) r – hkk(R&P)∑
k=1

N

max hkk(M&D) q – hkk(M&D)∑
k=1

N

0 8.1648771 10-2 2.22 10-16 8.1648771 10-2 0.0

1 8.5215146 10-1 0.0 8.5215146 10-1 –1.1 10-14

2 8.6468122 10-1 0.0 8.6468122 10-1 9.8 10-15

3 8.8121097 10-1 –1.8 10-15 8.8121097 10-1 –6.2 10-11

4 9.9999983 10-1 0.0 9.9999981 10-1 –1.6 10-8

Table 3. Observing the computed leverage values.

Both relations (6) and (7) are satisfied for networks with 3 and even 4 hidden

neurons, be the leverages computed with (12) ({hkk(R&P)}) or (15)

({hkk(M&D)}). It proves that only checking (6) and (7) for the leverage values

does not lead to discard the unusable models with 3 and 4 hidden neurons.

9

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

0.2

a)

b)

Figure 1. Network with 2 hidden neurons (k(Z) = 8.4 102): a) regression

(dotted line), model output (continuous line), training set (circles); b)

residuals. The training example and the residual corresponding to the largest

leverage (8.65 10-1) are marked with a circle filled in black. A second

leverage is larger than 0.5 (5.89 10-1), and the corresponding training

example and residual are marked with a circle filled in grey.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

0.2

a)

b)

Figure 2. Network with 3 hidden neurons (k(Z) = 2.1 109): a) regression

(dotted line), model output (continuous line), training set (circles); b)

residuals. The training example and the residual corresponding to the largest

leverage (8.81 10-1) are marked with a circle filled in black.

Let us have a closer look at the performance of the models with 2 and 3

10

hidden neurons, and at the interpretation of the leverage values. Figures 1 and

2 display the training examples and the residuals corresponding to leverage

values larger than 0.5. For both networks, the largest leverage value

corresponds to an example which lies at the boundary of the input domain

explored by the training set. This is a very typical situation of an influent

example. For the network with 2 hidden neurons, a second leverage value is

larger than 0.5: the fact that the corresponding example is located at an

inflexion point of the model output is the sign of its large influence on the

parameter estimate.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
-0.2

-0.1

0

0.1

0.2

a)

b)

Figure 3. Network with 4 hidden neurons (k(Z) = 9.0 109): a) regression

(dotted line), model output (continuous line), training set (circles); b)

residuals. The training example and the residual corresponding to the largest

leverage (9,9999983 10-1) are marked with a circle filled in black. The

training examples and residuals corresponding to three other leverages larger

than 0.5 are marked with a circle filled in grey.

Let us now examine the network with 4 hidden neurons. Four of its leverage

values are larger than 0.5. These values are the following (from the smallest to

the largest corresponding abscissa, see Figure 3):

h38 38(R&P) = 7.3268195 10-1

h39 39(R&P) = 9.9999983 10-1

h33 33(R&P) = 9.9981558 10-1

h1 1(R&P) = 8.4477304 10-1

The large leverage values correspond to:

– the two extreme examples (38 and 1),

11

– two overfitted examples (39 and 33).

As a matter of fact, large leverage values, i.e. values close to one but not

necessarily larger than one, are the symptom of local overfitting at the

corresponding training examples, or of extreme examples of the training set

that are relatively isolated, and hence influent. However, checking only (6)

and (7) for the leverage values would not lead to the detection of the

misbehavior of this network.

Finally, this example shows that ill-conditioning is not systematically related

to leverage values close to one: the largest leverage value of the very ill-

conditioned neural network with 3 hidden neurons (k(Z) = 2.1 109) equals

8.81 10-1, and is hence not much larger than the largest leverage value of the

well-conditioned neural network with 2 hidden neurons (k(Z) = 8.4 102),

which equals 8.65 10-1. Ill-conditioning is not systematically related to local

overfitting, but rather to a global parameter redundancy.

4. Conclusion

Our conclusion is threefold:

– In order to validate only neural candidates whose approximate parameter

covariance matrix and confidence intervals can be reliably estimated, the

first condition should be that the condition number of their Jacobian does

not exceed the square root of the inverse of the computer unit roundoff

(usually 108).

– If a procedure relies heavily on the computed values of the diagonal

elements of the hat matrix, the leverages, the latter should be computed

according to expression (12), as recommended in (Rivals and Personnaz,

2000), rather than according to the expression (15) given in (Monari and

Dreyfus, 2002): only the computation according to (12) ensures that the

computed hat matrix is a projection matrix, and that it is accurate.

– For candidates whose condition number is small enough, and for which the

leverages have been computed as accurately as possible according to (12),

one may check additionally if none of the leverage values is close to one, as

already proposed in (Rivals and Personnaz, 1998). Leverage values close

to, but not necessarily larger than one are indeed the symptom of

overfitted examples, or of isolated examples at the border of the input

domain delimited by the training set.

5. Other comment for (Monari and Dreyfus, 2002)

This comment concerns the estimation of the performance of the selection

method presented in (Monari and Dreyfus, 2002), for its comparison to

selection methods proposed by other authors. As in (Anders and Korn,

12

1999), the process to be modeled is simulated, and its output is corrupted by

a gaussian noise with known variance l. In order to perform statistically

significant comparisons between selection methods, 1000 realizations of a

training set of size N are generated. A separate test set of 500 examples is

used for estimating the “generalization mean square error” (GMSE) of the

selected models, and the following performance index is computed:

r =
GMSE – l

l
(18)

equation (5.3) in (Monari and Dreyfus, 2002). In the case N = 100, two

values of r , the average value of r on the 1000 training sets, are given:

a) a value of 126% corresponding to the above definition;

b) a value of 27% corresponding to a GMSE computed on a part of the test

set only: strangely enough, 3% of the examples of the test set are

considered as “outliers”, and discarded from the test set. This value of

27% is compared to the values of r obtained by other selection

procedures with the whole test set.

This second value of 27% is meaningless. Putting apart the fact that

considering examples of the performance estimation set as outliers is

questionable, lets call GMSE* the GMSE obtained in b). In the most

favorable case for (Monari and Dreyfus, 2002), i.e. the case where we assume

that the examples discarded by Monari and Dreyfus correspond to the largest

values of the gaussian noise (and not to model errors), this GMSE* should

not be compared to l, but to the variance l* of a noise with a truncated

gaussian distribution (without its two 1.5% tails). In the example, l = 5 10-3,

l* = 4.4 10-3. Thus, the ratio:

r* =
GMSE* – l*

l*
 >

GMSE* – l
l

 (19)

would be more representative of the real model performance.

To conclude, the second value of r obtained in (Monari and Dreyfus, 2002)

by discarding some examples of the test set can by no means be compared to

those obtained by other selection procedures correctly using the whole test

set for the performance estimation.

Appendix 1

This appendix summarizes results used in the paper; for details, see (Golub

and Van Loan, 1983).

Theorem for the Singular Value Decomposition (SVD)

Consider a (N,q) matrix Z with N ≥ q and rank(Z) = r ≤ q. There exist a (N,N)

orthogonal matrix U and a (q,q) orthogonal matrix V such that:

Z = U S VT (A1)

13

where S is a (N,q) matrix such that S ij = 0 for i ≠ j, and whose elements

{ S i i}, denoted by {si}, are termed the singular values of Z, with:

s1 ≥ s2 ≥ … ≥ sq ≥ 0 (A2)

If rank(Z) = r < q, s1 ≥ … ≥ sr ≥ sr+1 = … = 0.

The r first columns of U form an orthonormal basis of the range of Z.

Condition number using SVD

If rank(Z) = q, and using the matrix 2-norm3, the condition number k(Z) of Z

is expressed as:

k(Z) = �Z�2 �Z -1�2 = s1
sq

(A3)

If k(Z) is large, the matrix Z is ill-conditioned. We have the property:

k(ZT Z) = k(Z) 2 (A4)

Inverse of ZT Z using SVD

If rank(Z) = q, the inverse of ZT Z exists and, using the SVD of Z, can be

expressed as:

Z T Z
-1

 = V ST S
-1

 VT (A5)

where ST S
-1

 is a (q,q) diagonal matrix with:

ST S
-1

ii = 1
si

2
 for i=1 to q (A6)

Pseudo-inverse of Z using SVD

Any (N,q) matrix Z with rank r ≤ q has a pseudo-inverse. It equals:

Z I = V S I UT (A7)

where SI is a (q,N) matrix whose only non zero elements are the first r

diagonal elements:

S I
ii = 1

si
 for i=1 to r (A8)

Orthogonal projection matrix on the range of Z using SVD

The (N,N) projection matrix H on the range of any (N,q) matrix Z is given by:

H = Z ZI (A9)

Using the SVD of Z, we obtain:

H = U S VT V S I UT = U S S I UT (A10)

where the matrix S SI is hence a (N,N) diagonal matrix whose r first diagonal

elements are equal to 1 and all the others to 0, see (Golub and Van Loan,

3 The 2-norm of a matrix A is defined as:

�A�2 = supx≠0
||A x||2
||x||2

14

1983). Thus, the diagonal elements of H, the leverages, are given by:

hkk = uki
2∑

i=1

r

 for k=1 to N (A11)

Theorem for the QR Decomposition

Consider a (N,q) matrix Z with N ≥ q and rank(Z) = q. There exist a (N,N)

orthogonal matrix Q and an upper triangular (q,q) matrix R such that:

Z = Q R
0 (A12)

The q first columns of Q form an orthonormal basis of the range of Z.

Leverages using QR

Using the QR decomposition of Z, we obtain:

hkk = qki
2∑

i=1

q

 for k=1 to N (A13)

Angle between two subspaces

Let S1 and S2 denote the ranges of two (N,q) matrices Z1 and Z2, and H1 and

H2 the orthogonal projection matrices on S1 and S2. The distance between the

two subspaces S1 and S2 is defined as:

dist(S1, S2) = �H1 – H2�2 (A14)

The angle between S1 and S2 is defined as:

angle(S1, S2) = arcsin dist(S1, S2) (A15)

Appendix 2

Below follows the text of a Matlab program which constructs an ill-

conditioned matrix Z (for a small value of a), and computes the leverage

values using SVD, and formula (12) and formula (15), and also using the more

economic QR decomposition which is as accurate as (12):

clc
clear all
format compact
format short;

% construction of the (N,q) matrix Z
randn('seed',12345);
N=4;
q=2;
alpha = 1e-12
c = randn(N,1);
Z = [ones(N,1) ones(N,1)+alpha*c];
condZ = cond(Z)

% singular value decomposition of Z
[U,S,V] = svd(Z);
s = diag(S);
diff_s = s(1)-s(2)

15
% "True" leverages
Z1 = [ones(N,1) c];
[U1,S1,V1] = svd(Z1);
diagH_true = zeros(N,1);
for k=1:N

for i=1:q
diagH_true(k) = diagH_true(k) + U1(k,i)^2;

end
end
diagH_true = diagH_true

% Rivals and Personnaz estimates (12) of the leverages
tol = max(s)*eps;
r = sum(s > tol);
diagH_RP = zeros(N,1);
for k=1:N

for i=1:r
diagH_RP(k) = diagH_RP(k) + U(k,i)^2;

end
end
diagH_RP = diagH_RP
r_sumd_RP = r-sum(diagH_RP)

% Monari and Dreyfus estimates (15) of the leverages
diagH_MD = zeros(N,1);
for k=1:N

for i=1:q
toto = 0;
for j=1:q

toto = toto + Z(k,j)*V(j,i);
end
diagH_MD(k) = diagH_MD(k) + (toto/s(i))^2;

end
end
diagH_MD = diagH_MD
q_sumd_MD = q-sum(diagH_MD)

% Economic estimates of the leverages using the QR
decomposition
[Q,R] = qr(Z);
diagH_QR = zeros(N,1);
for k=1:N

for i=1:q
diagH_QR(k) = diagH_QR(k) + Q(k,i)^2;

end
end
diagH_QR = diagH_QR
r_sumd_QR = r-sum(diagH_QR)

Output of the program:

alpha =
 1.0000e-12
condZ =
 2.8525e+12
diff_s =
 2.8284
diagH_true =
 0.2719
 0.2580
 0.7758
 0.6943
diagH_RP =
 0.2719
 0.2580

16
 0.7759
 0.6943
r_sumd_RP =
 0
diagH_MD =
 0.2720
 0.2579
 0.7756
 0.6944
q_sumd_MD =
 1.8643e-05
diagH_QR =
 0.2719
 0.2580
 0.7759
 0.6943
r_sumd_QR =
 0

References

Anders, U., and Korn, O. (1999). Model selection in neural networks. Neural

Networks, 12, 309-323.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and

Sorensen, D. (1999). LAPACK User's Guide, Third Edition. Siam,

Philadelphia.

Dongarra, J., Moler, C. B., Bunch, J. R., and Stewart, G. W. (1979).

LINPACK User's Guide. Siam, Philadelphia.

Golub, G. H., and Reinsch, C. (1970). Singular value decomposition and

least-squares solutions. Numerische Mathematik, 14, 403-420.

Golub, G. H., and Van Loan, C. F. (1983). Matrix computations. John

Hopkins University Press, Baltimore.

Monari, G., and Dreyfus, G. (2002). Local Overfitting Control via Leverages.

Neural Computation, 14, 1481-1506

Press, W. H., Teukolsky, S.A., Vetterling, W. T., and Flannery, B. P. (2002).

Numerical recipes in C. Cambridge University Press.

Rivals I., and Personnaz, L. (1998). Construction of confidence intervals in

neural modeling using a linear Taylor expansion. Proceedings of the

International Workshop on Advanced Black-Box Techniques for Nonlinear

Modeling, Leuwen, 8-10 July 1998.

Rivals I., and Personnaz, L. (2000). Construction of confidence intervals for

neural networks based on least squares estimation. Neural Networks 13,

463-484.

