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Abstract – In nonlinear regression theory, the sandwich estimator of the

covariance matrix of the model parameters is known as a consistent estimator,

even when the parameterized model does not contain the regression. However,

in the latter case, we emphasize the fact that the consistency of the sandwich

holds only if the inputs of the training set are the values of independent

identically distributed random variables. Thus, in the frequent practical

modeling situation involving a training set whose inputs are deliberately

chosen and imposed by the designer, we question the opportunity to use the

sandwich estimator rather than the simple estimator based on the inverse

squared Jacobian.

Index Terms – confidence intervals, experimental design, fixed inputs,

heteroscedasticiy, i.i.d. random inputs, i.n.i.d. random inputs, least squares

estimation, linear Taylor expansion, model misspecification, neural networks,

parameter covariance matrix, nonlinear regression, sandwich estimator.

1. Motivation

In some statistical tests for the comparison between candidate neural models, for the

estimation of a confidence interval for the conditional mean of the process output, or

for the detection of outliers, an estimate of the covariance matrix of the network

parameters is needed. Various estimators have been established, among them:

a) the estimator based on the inverse squared Jacobian (ISJ), which is consistent if

the parameterized model contains the regression and if the noise is

homoscedastic; this consistency holds, be the input values of the training set

fixed, or realizations of independent identically distributed (i.i.d.) random variables,

or even realizations of independent not identically distributed (i.n.i.d.) random
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variables.

b) the sandwich estimator, which is consistent regardless of whether the noise is

homoscedastic or not, if the parameterized model contains the regression. If it

does not, the sandwich estimator is proved to be consistent if the inputs of the

training set are the values of i.i.d. random variables, a fact that is seldom clearly

mentioned in the literature.

Thus, we question the opportunity of using the sandwich estimator in frequent

practical situations of industrial process modeling, where the input values of the

training set are deliberately chosen and imposed by the designer, and hence cannot

be considered as realizations of i.i.d. random variables.

In section 2, we summarize the modeling framework of the ISJ estimator, and in

section 3, that of the sandwich estimator. In section 4, we consider a model with a

single parameter that does not contain the regression, in the case of fixed inputs, and

we show analytically that the sandwich estimator is not consistent. In section 5,

depending on the designer's choice and control of the inputs, we discuss whether it is

appropriate to consider the inputs of the training set as fixed, random i.n.i.d., or

random i.i.d. In the simulations of section 6, we compare the ISJ and the sandwich

estimators of the variance of a model output, when the parameterized model contains

the regression and when it does not, and in various situations concerning the

designer's choice and control of the inputs.

2. Modeling framework for the ISJ estimator

This framework considers a scalar output Y which is a random variable1 depending

on a n -input vector x = x1 x2 … xn
T , which is either fixed or the realization of a

random vector X. We assume a regression model, so that for any value of x:

Y = r(x) + W (1)

where r is the unknown regression function, and W is a random variable with zero

expectation and finite variance, modeling the unexplainable part of the process

output. The goal is to approximate the regression r using a parameterized model

f x, q , x ∈ �n, q ∈ �q , a neural network for instance. If there exists a true

parameter value qt
  of q  such that f x, qt  = r(x) in the input domain of interest, the

parameterized model contains the regression, and is said to be true; if not, it is said

to be wrong.

A training set xk, yk k=1 to N  is assumed to be available. A least squares (LS)

1 Notations: we distinguish between random variables and their values (or realizations) by using

upper- and lowercase letters; all vectors are column vectors, and are denoted by boldface letters, e.g.

the n-vectors x and {xk}; matrices are denoted by courier letters, e.g. the (N,q) matrix zN .
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parameter estimate qN  minimizes the empirical cost function:

lN(q) = 1
N

 1
2

 yk – f xk, q 2∑
k=1

N
(2)

The ISJ estimate of the covariance matrix of qN
  is given by:

K QN ISJ = sN2 zNT zN -1 (3)

where zN  is the (N, q) Jacobian matrix evaluated at qN 
  with elements:

zN ki = ∂f x k, q
∂qi

 
q=qN 

(4)

and sN 2 is obtained with the residual N-vector rN, whose components are

rN
k = yk – f xk, qN :

sN2 = rNT rN
N – q

(5)

If the parametrized model is true, if the noise is homoscedastic with variance s2, and

under appropriate regularity conditions, the ISJ covariance estimator corresponding

to the estimate (3) is consistent, be the input values of the training set fixed [Seber &

Wild 1989], realizations of i.i.d. random variables [White 1982], or of i.n.i.d. random

variables [White 1980].

In the case of a black-box model such as a neural network, one is usually not directly

interested in the particular values of its parameters nor in their covariance; one is

rather interested in the output value (the point estimate of the regression) and in the

variance of this output var f x, QN , for example in order to compute a confidence

interval for the regression value r(x) or to detect outliers. Using the ISJ estimate (3)

of the covariance matrix of the parameters, the model output variance at a given

input x is estimated with:

var f x, QN ISJ = zT K QN ISJ z = sN2  zT zNT zN 
-1 z (6)

where:

z = ∂f x, q
∂q

 
q=qN 

(7)

However, if the parametrized model is wrong or if the noise is heteroscedastic, the

estimator corresponding to the ISJ estimate (3) is not consistent, nor is the output

variance estimator based upon it. Like for example in [Tibshirani 1996] and [Anders &

Korn 1999], one could hence be tempted to use the sandwich estimate of K(QN).

3. Modeling framework for the sandwich estimator

We recall the framework of the derivation of this estimator, as described in [White
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1989]2. Both the inputs and the outputs are considered as random. The joint behavior

of X and Y is supposed to be described by a joint probability law n, and an input-

output couple is denoted by the (n+1)-vector U = [XT Y]T.

It is assumed that there exists a vector q* (supposed unique for simplicity) that

minimizes the theoretical LS cost function:

l(q) = l u, q  n du  = 1
2

 y – f x, q 2 n du (8)

The empirical LS cost function (2), defined on a sample {uk}k=1 to N of realizations of

i.i.d. variables {Uk}k=1 to N, is a realization of the random variable:

LN (q) = 1
N

 l U k, q∑
k=1

N
 = 1

N
 1

2
 Yk – f X k, q 2∑

k=1

N
(9)

The estimator QN , whose realization qN minimizes (2), is a strongly consistent

estimator of q*.

We pose a* = E ∇
2l U , q*  and b* = E ∇l U , q*  ∇l U , q*

T
, where ∇  and ∇2 denote

the gradient and the Hessian operators, and c*  = a*-1 b* a*-1. The limiting

distribution of N QN – q*  is � 0 , c*  [White 1989].

The sandwich estimator of the covariance matrix K N  QN  is CN = AN
-1 BN AN

-1 with:

AN = 1
N

 ∇
2l U k, QN∑

k=1

N
   ;   BN = 1

N
 ∇l U k, QN  ∇l U k, QN

T ∑
k=1

N
(10)

The estimator CN  is a strongly consistent estimator of c*. The sandwich estimator

was proved to be consistent regardless of whether the noise is homoscedastic or not,

if the parameterized model is true [White 1982, 1989]. If the parameterized model is

wrong, the consistency holds only if the inputs of the training set are the values of

i.i.d. random variables.

Hence, with the notations of the previous sections, the sandwich estimate of the

covariance matrix K QN  is:

K QN SAN = 1
N

 aN-1 bN  aN-1 = 1
N2

 aN-1 rN
k 2 zN

k zN
k T ∑

k=1

N
  aN-1 (11)

where the zN
k T  are the rows of the matrix zN , and aN and bN are the realizations of

the random matrices AN and BN. The model output variance at x is estimated with:

var f x, QN SAN = zT K QN SAN z = 1
N2

 z T aN-1 rN
k 2 zN

k zN
k T ∑

k=1

N
  aN-1 z (12)

2 We try to be as close as possible to White's notations, while sticking to uppercase letters for random

variables only, to boldface letters for vectors, and to courier letters for matrices.
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4. Example of the non-consistency of the sandwich estimator in the case of a

wrong model, and of fixed inputs

We consider a training set obtained on a SISO process simulated with:

yk = r + wk     k =1 to N     r = cte  ≠ 0 

The noise is homoscedastic with variance s2.

The chosen predictive model is linear in x:

f x, q  = q x 

Thus, this model is wrong. The LS estimate of the parameter q is:

qN = 

xk yk∑
k=1

N

xk 2∑
k=1

N

The {xk} are fixed; we further choose them centered, that is xk∑
k=1

N
 = 0. For the

sandwich estimator CN of var N QN , we obtain:

AN = aN = 1
N

 xk 2∑
k=1

N
 = SxN

2

BN = 1
N

 xk Yk – xk QN
2∑

k=1

N

We have:

E BN  = SxN
2  r2 + s2  – 1

N
 SxN

4

SxN
2
 s 2     with      SxN

4  = 1
N

 xk 4∑
k=1

N

Hence:

E CN  = r2 + s2

SxN
2

 – 1
N

 SxN
4

SxN
2 3

 s 2 (13)

But the variance of N QN  is given by:

var N QN  = N 

xk 2 var yk∑
k=1

N

xk 2∑
k=1

N 2
 = N s 2

xk 2∑
k=1

N
 = s 2

SxN
2

(14)

Hence, E CN  given by (13) does not converge to the true value of the parameter

variance (14).

We choose the fixed {xk} regularly spaced in – 3  ; 3 , r = 1 and s2 = 1. The results

are summarized in Table 1. As shown above, the sandwich estimator CN is a not a

consistent estimator of the variance of N QN .

This example shows that the property of the sandwich to be consistent, even if the

model is wrong, does not hold if the input values of the training set are fixed. We
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insist on this point, because it is not clearly mentioned in the literature, see for

example [Kauermann & Carroll, 2001], where the inputs are fixed.

N var N QN E CN

20 0,90 1,73

100 0,98 1,94

1000 1,00 1,99

10 000 1,00 2,00

Table 1. The input values of the training set are fixed, regularly spaced in – 3  ; 3 : the

sandwich estimator CN of var N QN  is not consistent.

5. Fixed versus independent identically (or not) distributed random inputs, and

experimental context

The consistency of the ISJ and sandwich estimators rely on different assumptions.

Be the inputs be fixed, random i.n.i.d., or random i.i.d., the ISJ estimator is consistent

if the parameterized model is true and if the noise is homoscedastic. Regardless of

whether the noise is homoscedastic or not, the sandwich estimator is consistent even

if the model is wrong, but in the latter case, the consistency holds only if the inputs

are random i.i.d. variables.

designer
setpoints

measured
inputs

measured
outputs

r

nature’s
influence

noise

{sk} {Xk} {r(Xk)} {Yk}

{Wk}{Vk}

Figure 1. Experimental modeling situations and kind of the training set inputs. The setpoints of

the designer are modeled by the fixed {sk}. Nature's influence is modeled by the random, i.i.d

{Vk}. The actual, measured process inputs {Xk}, are a combination of the designer setpoints and

of nature's influence. Their respective weights depend on the experimental situation: a) the

designer has no control on the inputs, which are collected according to their common

distribution during the operation of the process (the {Xk = Vk} are random, i.i.d variables) ; b) the

designer has complete control on the inputs, and chooses their values deliberately (the {xk = sk}

are fixed) ; c) the designer chooses the inputs deliberately, but does not have complete control

on their values (the {Xk = sk + Vk} are random, but i.n.i.d).
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We now examine how the inputs should be modeled, according to the design context

of the model. As in [White 1989], we assume that the inputs are measured with

absolute accuracy3.  We distinguish between the three following practical situations,

as illustrated in Fig. 1:

a) The designer does not choose the training set inputs, which are collected

according to their common distribution during the operation of the process.

The designer has no control on the values of the inputs, like for an economical

process or a natural process (meteorology prediction, snow avalanche forecasting,

prediction of the economic growth of a country). The designer collects the input-

output couples during the operation of the process, and does not make any further

selection among this data for the constitution of the training set. Thus, the input

values of the training set are drawn according to the distribution that corresponds to

the natural operation of the process. They could have been different while still drawn

from the same distribution, and should hence be considered as realizations of

identically distributed random variables. In such a case, the designer is interested in

the variance of the model output, due not only to the variability of the outputs of the

training set, but also to that of its inputs. In this context, the sandwich estimator is

consistent, and one can expect it to give correct results for large N, even in the case

of a wrong parameterized model or of heteroscedasticity. If the model is true and if

the noise is homoscedastic, the ISJ estimator is also consistent.

b) The designer chooses and has complete control on the input values. This

situation arises in the context of the development phase of an industrial process, or of

laboratory experiments. In such cases, the designer is free to choose the training set

inputs, for example according to an experimental design that is optimal in some

sense (e.g. that minimizes the width of the confidence intervals for the regression).

Then, there is no reason to consider that the inputs of the training set could have

been different. The input values of the training set should be considered as fixed, and

the designer is interested in the variance of the model output due to the variability of

the training set outputs only. In this context, the ISJ estimator as well as the sandwich

will give correct results when the model is true, the noise is homoscedastic, and N is

large. But both estimators will not be consistent in the case of a wrong model.

Note that our interpretation differs from that of White in [White 1989]. White considers

that, even when the designer has complete control on the inputs of the training set,

they should still be considered as random, identically distributed variables, with a

discrete distribution defined by "the relative frequencies with which different values

3 Input measurement error is taken into account in the so-called "errors-in-variables” models, see for

instance [Seber & Wild 1989]
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for [the inputs] are set". This would mean that the designer assigns given

probabilities to a finite set of input values, and picks the N input values of the training

set randomly among them, according to the chosen probabilities. To our knowledge,

when the designer has complete control on the inputs, he does not pick them at

random, but imposes their values.

c) The designer chooses the inputs, but has not complete control on their

values. This intermediary situation arises in the case of a process whose inputs are

controlled by the designer, but up to a certain extent. For example, consider a

process for which some input temperature is controlled by a regulator. A setpoint for

the temperature can be fixed, but, due to disturbances, the actual value of the

temperature, which is the real input, is slightly different from the setpoint. The

temperature is measured accurately, but it is not set with absolute control. This

situation can also arise in the case of an economical or ecological process for which

the designer has no control on the inputs, but is free to choose the training set inputs

among the numerous available ones, close to values determined by an experimental

design. In that case, the inputs should be considered as random, non identically

distributed variables. As in the context of fixed inputs, both the ISJ and the sandwich

estimators are consistent if the model is true and the noise is homoscedastic; but

both are not if the model is wrong.

These situations are summarized in Table 2.

true parameterized model wrong model

Inputs Estimator homoscedasticity heteroscedasticity

fixed or ISJ yes no no

random i.n.i.d. SAND yes yes no

random ISJ yes no no

i.i.d. SAND yes yes yes

Table 2. Consistency (yes or no) of the ISJ and sandwich estimators.

6. Illustrative simulation example

In order to compare the accuracy of the ISJ estimate (6) and of the sandwich

estimate (13) of the variance of f x, QN , we need a reference estimate that is not

model dependent. For a simulated process, it can be obtained with a large number M

of realizations of the training set. The i-th LS estimate f x, qN
(i)  of r(x) is computed

with the i-th training set (i=1 to M), and a good estimate of the variance at input x is

computed according to:

1
M

 f x, qN
(i)  – f x 2∑

i=1

M
 , where  f x  = 1

M
 f x, qN

(i)∑
i=1

M
(15)
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This estimate is not affected by a wrong parametrization, and it is not biased by

curvature effects; only a sufficiently large M is needed. In the following, this reference

estimate is called the "true variance" (with quotation marks).

We consider three different "distributions" of the inputs of the training set

corresponding to the three situations a), c) and b) described in section 5:

– random, i.i.d. inputs (the training set is collected during the natural operation of

the process);

– random i.n.i.d. inputs, centered around fixed values (the designer chooses the

training set inputs deliberately, but has incomplete control on their values);

– fixed inputs (the designer chooses the training set inputs deliberately, and has

complete control on their values).

These situations are considered first in the case of a wrong model, and then in the

case of a true one, the noise being homoscedastic in both cases.

6.1 Case of a wrong model

We consider a nonlinear SISO process simulated with:

yk = tanh xk  + 1.5 exp –8 xk 2  + wk     k=1 to N (16)

where the {wk} are the values of i.i.d. centered gaussian variables with variance

s2 = 0.01, and N = 100. The predictive model is a network consisting of a single

neuron with hyperbolic tangent activation function:

f x, q  = tanh  q0 + q1 x (17)

Thus, this model is wrong.

a) Random i.i.d. inputs

The {xk} are values of i.i.d. random variables uniformly distributed in [–1.5; 1.5]. The

"true variance" (15) is computed on M = 104 training sets obtained for different

realizations of the inputs and of the corresponding outputs. For each training set,

several trainings with the Levenberg-Marquardt algorithm are performed for the

estimation of the parameters in order to reach a global minimum. The means and the

standard deviations of the ISJ estimate (6) and of the sandwich estimate (12) are

estimated with the M sets, in the input domain [–1.5; 1.5]. The results obtained are

shown on Fig. 2. Since we are in the conditions of White's theorems, the mean of the

sandwich estimate (12) is indeed very close to the "true variance" (15) (Fig. 2b),

whereas the mean of the ISJ estimate (6) is not. Note that the standard deviation of

the sandwich is much larger than that of the ISJ estimate (Fig. 2c): it is almost twice

as large as the mean.

b) Random i.n.i.d. inputs

The {xk} are values of N independent gaussian variables centered around N regularly

spaced values in [-1.5; 1.5], with a variance of 10-3 around each value. The “true
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variance” is estimated with M = 104 training sets obtained for different realizations of

the inputs and of the corresponding outputs. The results obtained are shown on

Fig. 3. Since the conditions of White's theorems are not met (the inputs are not i.i.d.),

the mean sandwich estimate is less close to the "true variance" than in the previous

case (Fig. 3b). Moreover, the standard deviation of the sandwich is much larger than

that of the ISJ estimate (Fig. 3c).

c) Fixed inputs

The fixed {xk} are regularly spaced in [-1.5; 1.5]. The “true variance” is estimated with

M = 104 training sets obtained for different realizations of the outputs only. The

results obtained are shown on Fig. 4. Since the conditions of White's theorems are

definitely not met (fixed inputs), the mean sandwich estimate is very different from the

"true variance" (Fig. 4b). The standard deviation of the sandwich estimator is, again,

much larger than that of the ISJ estimator (Fig. 4c).

6.2 Case of a true model

We now consider a nonlinear SISO process simulated with:

yk = tanh xk  + wk     k =1 to N (18)

where the {wk} are, again, the values of i.i.d. centered gaussian variables with

variance s2 = 0.01. The predictive model is the single neuron with hyperbolic tangent

activation function given by (17): this model is true.

a) Random i.i.d. inputs

The results obtained with N = 100 are shown on Fig. 5. The model being true, both

the ISJ and the sandwich estimator are consistent, and N = 100 proves to be large

enough to obtain a good precision with both estimators (Fig. 5b). But the standard

deviation of the sandwich estimator is larger than that of the ISJ estimator (Fig. 5c).

Moreover, with N = 10, the sandwich estimator significantly underestimates the

output variance, whereas the ISJ estimator does not. The corresponding results,

obtained with M = 105 realizations of the training set, are shown on Fig. 6.

b) Random i.n.i.d. inputs

The model being true, both the ISJ and the sandwich estimator are consistent.

Experimentally, with N = 100, the means of both the ISJ and the sandwich estimates

are close to the "true variance", and the standard error of the sandwich estimator is

larger than that of the ISJ (the results are almost identical to those of Fig. 5). But

again, with N = 10, the sandwich estimator quite underestimates the output variance,

whereas the ISJ estimator does not (the results are between those of Fig. 6 and Fig.

7).
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Figure 2. Wrong model, random i.i.d. inputs, N = 100: a) regression (thick line), mean output

estimate (thin line); b) “true variance” of f x, QN  (15) (thick line), mean ISJ variance estimate (6)

(dotted line), mean sandwich variance estimate (12) (thin line); c) standard errors of the ISJ

(dotted line), and of the sandwich (thin line) variance estimators.
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Figure 3. Wrong model, random i.n.i.d. inputs, N = 100: same caption as in Fig. 2.
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Figure 4. Wrong model, fixed inputs, N = 100: same caption as in Fig. 2.
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Figure 5. True model, random i.i.d. inputs, N = 100: same caption as in Fig. 2.
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Figure 6. True model, random i.i.d. inputs, N = 10: same caption as in Fig. 2.
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Figure 7. True model, fixed inputs, N = 10: same caption as in Fig. 2.
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c) Fixed inputs

With N = 100, both estimators give good mean results, but the standard error of the

sandwich estimator is still larger than that of the ISJ estimator (the results are almost

identical to those of Fig. 5). And again, with N = 10, the sandwich estimator

underestimates the output variance, whereas the ISJ estimator does not, as shown

on Fig. 7 (M = 105).

The fact that the sandwich estimator is biased for small N, and has a larger standard

error than the ISJ estimator in the case of a true model and fixed inputs has been

proved in [Kauerman & Carroll 2001], for linear and generalized linear models.

7. Conclusion

Let us conclude regarding the opportunity of using the sandwich estimate of the

covariance matrix of the parameters rather than the simple ISJ estimate, in the

homoscedastic case. This question arises when estimating the variance of the output

of a neural network, for example in order to build a confidence interval for the

regression, or for the detection of outliers.

In the case where the designer collects the training set input values during the natural

operation of the process (i.i.d. random inputs):

a) The sandwich estimator shows an advantage over the ISJ estimator when the

parameterized model is wrong, for large N. But, in that case, a confidence interval

for the regression is anyway meaningless, since the estimator of the regression is

biased. Moreover, when N is large, it should be easy to find a model that contains

the regression using a constructive procedure and statistical tests [Rivals &

Personnaz, 2003].

b) If the model is true, both the ISJ and the sandwich estimators are consistent. But,

in our simulations, we observed that the variance of the ISJ estimator is smaller

than that of the sandwich, even for large N; for small N, we also observed a larger

bias of the sandwich. However, this remains to be investigated mathematically.

In the case where the designer chooses the training set inputs and imposes their

values quite accurately (fixed or i.n.i.d. random inputs):

a) If the model is wrong, both the ISJ and the sandwich estimators are not

consistent;

b) If the model is true, both the ISJ and the sandwich estimators are consistent; but,

as for i.i.d. inputs, the variance of the ISJ estimator is smaller than that of the

sandwich, and the sandwich has a significant bias for small N. This was shown in

[Kauerman & Carroll 2001], at least for linear and generalized linear models .

Thus, even in the case of a true model, be the inputs fixed of random i.i.d, there is no

real advantage in using the sandwich estimator.
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However, it is still interesting to use the sandwich estimator in the case where

heteroscedasticity is suspected and where the available information about the noise

is not sufficient to perform weighted least squares, or precisely in order to test the

homoscedasticity of the noise.
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