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We describe and discuss the properties of a binary neural network that
can serve as a dynamic neural �lter (DNF), which maps regions of input
space into spatiotemporal sequences of neuronal activity. Both determin-
istic and stochastic dynamics are studied, allowing the investigation of
the stability of spatiotemporal sequences under noisy conditions. We de-
�ne a measure of the coding capacity of a DNF and develop an algorithm
for constructing a DNF that can serve as a source of given codes. On the
basis of this algorithm, we suggest using a minimal DNF capable of gen-
erating observed sequences as a measure of complexity of spatiotemporal
data. This measure is applied to experimental observations in the locust
olfactory system, whose reverberating local �eld potential provides a nat-
ural temporal scale allowing the use of a binary DNF. For random synaptic
matrices, a DNF can generate very large cycles, thus becoming an ef�cient
tool for producing spatiotemporal codes. The latter can be stabilized by
applying to the parameters of the DNF a learning algorithm with suitable
margins.

1 Introduction

Three types of neural network paradigms (Hertz, Krogh, & Palmer, 1991;
Peretto, 1992) were developed two decades ago. Two of them were based
on supervised learning, in order to construct feedback attractor networks
(Hop�eld, 1982) for associative memory and feedforward multilayer per-
ceptrons (Rumelhart, Hinton, & Williams, 1986) for functional representa-
tion. The third used unsupervised learning to produce self-organized maps
(Kohonen, 1982). These three conventional paradigms of neural computa-
tion were formulated in terms of mathematical neurons that are very differ-
ent from biological reality, and it is still unclear how, if at all, biologicalneural
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networks perform any of them. Over the past decade, interest in theoretical
neuroscience (Dayan & Abbott, 2001) has shifted to analyzing neural net-
works of spiking neurons with dynamical synapses in the hope of getting
closer to the natural roles and purposes of the relevant biological networks.
We will argue that it is nevertheless timely to consider yet another model of
binary neurons with discrete temporal dynamics and show its applicability
to a biological system.

An interesting issue in neuroscience is the question of spatiotemporal
coding. Its existence has been demonstrated (Wehr & Laurent, 1996) in the
locust olfactory system, where the spatiotemporal behavior of projection
neurons encodes the odor presented to its receptor neurons. This transfor-
mation from odor input to spatiotemporal activity occurs in the antennal
lobe, that is, the �rst module of the olfactory system. This system may there-
fore be regarded as a dynamic neural �lter that turns spatial information
distributed over its many glomeruli, fed by the receptor neurons, to speci�c
spatiotemporal outputs. Although this is a complicated biological system,
it has an important simplifying feature that allows it to be represented by a
simpli�ed model of mathematical neurons: the fact that the activity of the
projection neurons is limited to temporal bins de�ned by an oscillatory local
�eld potential. Hence, a model with binary neurons obeying Hop�eld-Little
dynamics (Peretto, 1992) can provide a valid �rst-order approximation of
the spatiotemporal behavior of that system. We study a recurrent model
of this kind using an asymmetric coupling matrix that allows for the gen-
eration of large temporal sequences. The novelty of our approach is that
we use this model as a dynamic neural �lter (DNF), relating input space
to spatiotemporal behavior of the recurrent network. As such, it does not
correspond to any of the three paradigms noted above, it does not come to
rest at �xed points, and it is not necessarily based on supervised learning.

We have presented this model in a previous work (Quenet, Horn, Drey-
fus, & Dubois, 2001) and demonstrated how it can be used to generate the
spatiotemporal behavior of projection neurons observed by Wehr and Lau-
rent (1996). Here we discuss several fundamental issues concerning this
model, such as its stability and coding capacity. Moreover, we provide an
algorithm for constructing a DNF that can generate a given set of spatiotem-
poral data. This algorithm is used to de�ne and characterize the complexity
of the data set of Wehr and Laurent (1996). It should be emphasized that
the latter is used only as a relevant example, and we do not claim that the
DNF is a realistic representation of the biological reality. Nonetheless, as in
the conventional three paradigms, it can be used as a schematic model that
will subserve further detailed modeling of biological systems.

2 The Model

2.1 Short Biological Motivation. The antennal lobe of insects serves as
the �rst stage of olfactory computation, using as input signals of chemical
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receptors and transforming them into outputs of projection neurons (PN) to
the next stage of the olfactory tract (the mushroom body). In the locust, there
are about 800 excitatory PN cells (Laurent and Naraghi, 1994) and a slightly
smaller number of inhibitory local interneurons (LN) that form dendroden-
dritic interactions with the PNs and with themselves, and receive receptor
information as well. The output of this system is that of PNs only; hence,
we will consider our model as a rough sketch of PNs, with interactions that
should be regarded as effective interactions mediated by the LNs.

The antennal lobe exhibits a reverberating �eld potential (LFP) at a fre-
quency of about 20 Hz. This LFP reverberates for a few cycles (up to tens
of them) and then quiets down until it begins to repeat such behavior. (See
Laurent et al., 2001, for details.) The PNs �re within the up-phase of the LFP;
hence the latter may be regarded as de�ning an effective clock, with time
bins of, for example, 30 ms of activity and 10 ms of rest. This motivates us
to use a simpli�ed model with discrete temporal dynamics.

2.2 The Recurrent Network. In our model, a binary neuron i, represent-
ing a PN, may either �re, ni D 1, or be quiescent, ni D 0, in a given temporal
bin of the LFP. There are N neurons in the model obeying the following
Hop�eld-Little dynamics,

ni (t C 1) D H (hi (t C 1) ) D H

0

@
X

j

wijnj (t) C Ri ¡ hi

1

A , (2.1)

where wij is the synaptic coupling matrix, Ri is the external constant input
(specifying odor activation), and hi is the threshold. H is the Heaviside step
function taking the values 0 for nonpositive arguments and 1 for positive
ones.

This model can be readily generalized to account for the presence of noise
by replacing the deterministic rule by the stochastic one,

Prob[ni (t C 1) D 1] D
1

1 C e¡hi (tC1) /2 . (2.2)

where 2 is the noise parameter. We will study the stability of results of the
deterministic dynamics to the noise introduced by the stochastic dynamics.

2.3 Deterministic Dynamics. In order to analyze the one-step dynamics
of equation 2.1, we de�ne a Lyapunov function L that describes just this one-
step, in the sense that, considering all dynamical states at time t C 1, it will
be minimal for the state that is a solution to these dynamics. Let us de�ne
the initial and �nal states,

nI
i D ni (t) nF

i D ni (t C 1) , (2.3)
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relevant to the one-step of equation 2.1. Clearly, I and F are just two of the
2N states that the system of neuron possesses. We can prove that

LJI D ¡
X

ij

wijn
J
i n

I
j ¡

X

i
nJ

i (Ri ¡ hi) (2.4)

obtains its unique minimum on the state J D F.
Consider

kJI
i D ¡(2nJ

i ¡ 1)hI
i D ¡(2nJ
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A . (2.5)

For J D F, this quantity is negative for every i, following the deterministic
dynamics. For any other J, there will be elements i for which the sign will
�ip. Hence,

P
i kJI

i will be minimal for J D F. We note in equation 2.5 that kJI
i

contains terms that are dependent on nJ
i , to be denoted by 2lJIi where

lJIi D ¡nJ
i
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A , (2.6)

and terms that are independent of nJ
i . Since the latter are common for all J,

the minimum of
P

i kJI
i will be reached for the same J as the minimum of

LJI D
P

i lJIi , the Lyapunov function of equation 2.4.

2.4 Stochastic Dynamics. The one-step Lyapunov function, equation 2.4,
plays an important role in the stochastic dynamics.1 As we will see, the prob-
ability of obtaining a state J after starting from a state I can be written in
terms of this function:

P (J | I) D
e¡LJI /2

P
K e¡LKI /2 . (2.7)

To prove this result, we start from the probability of obtaining the state
F, that is, the one following from the deterministic dynamics. It is straight-
forward to show that

P (nF
i | I) D

1

1 C ekFI
i / 2

I (2.8)

1 It was applied to a model with symmetric synaptic couplings by Quenet, Cerny,
Dreyfus, and Lutz (1997).
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hence,

P (F | I) D P iP (nF
i | I) . (2.9)

Any other state J differs from the state F by some �ips of neuronal states,
for example, nJ

m D 1 ¡ nF
m. In such a case, P (J | I) will be the probability

of obtaining the corrupted state F, having the wrong digit in its mth place,
which is P (F | I)ekFI

m /2 . But at this location m,

kFI
m D

1
2

(kFI
m ¡ kJI

m ) D lFI
m ¡ lJIm. (2.10)

Since for all other neurons lFI
i D lJIi , it follows that

P (J | I) D P (F | I)e(LFI¡LJI ) /2 . (2.11)

This will be true for any state regardless of how many �ips occur because
of their independent nature. Hence, equation 2.7 is proved.

The stochastic dynamics of equations 2.1 and 2.2 lead to a homogeneous
and irreducible Markov process; the transition matrix is time invariant, and
all elements of the transition matrix,

TJI D P (J | I) , (2.12)

are strictly positive. Such a Markov process has a stationary probability
distribution, p (I) , that is, an eigenvector of the transition matrix with the
highest eigenvalue, 1:

X

I

TJIp (I) D p (J) . (2.13)

From this stationary probability distribution, obtained asymptotically in the
evolution of the system, one can calculate the asymptotic probabilities of
the transitions p(I ! J):

p (I ! J) D P (J | I)p (I) . (2.14)

The stationary Markov process has an entropy rate (Cover & Thomas,
1991),

H D ¡
X

IJ

p (I)TJI log2TJI, (2.15)

that serves as a lower bound on the expected dimension of any binary code
of the Markov process. Since in our case all states are described by vectors
of length N, it follows that

H · N. (2.16)

The upper limit is approached when the noise parameter 2 is high and all
transition matrix elements tend to be equal.
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3 Numerical Examples

We propose to view the model described in the previous section as a �lter-
relating input space Ri to spatiotemporal sequences of the recurrent net-
work. In this section, we will demonstrate numerically how the DNF acts.
For simplicity, we choose both wij and Ri to have positive and negative in-
teger values, while �xing hi D 1

2 . This means that Ri will now effectively
represent both input and threshold of neuron i.

3.1 Mapping of Input Space. Once the matrix w is given, there is a
restricted range of interest for R:

¡
X

j

wijH (wij) · Ri · ¡
X

j

wijH (¡wij) C 1. (3.1)

Outside this range the dynamics becomes trivial because the input deter-
mines the neuronal values directly.

As a �rst example of deterministic dynamics, we study an N D 2 system
because it can be easily mapped in an exhaustive manner. We choose the
synaptic matrix

w D
³

1 2
¡2 ¡1

´

and use an initial null state ni (0) D 0. The dynamics generate 14 different
sequences, including the four (2N ) �xed points, several two-cycles, and one
four-cycle. In Figure 1, we display the coding zones, that is, the ranges of R
corresponding to a single temporal sequence. The overall range of R space
is chosen to be somewhat larger than the range of equation 3.1. In its center,
we �nd that many different sequences are produced (small coding zones),
while in the periphery, a single sequence dominates. Figure 2 shows the
length of each sequence on the same R plane. We de�ne it as the length of
the sequence the model generates before one of its states is being repeated.
This de�nition of length takes into account both the order of the cycle and
the transition time it takes to reach it. The interesting (i.e., long) sequences
appear near the center of R space. The periphery is dominated by �xed
points and two-cycles.

Building on this experience, we next study an N D 5 system with the
synaptic matrix

w D

0

BBBB@

0 ¡2 ¡5 ¡3 0
6 2 8 ¡14 0
1 1 0 ¡2 1

¡4 6 1 1 3
4 ¡1 2 ¡4 0

1

CCCCA
.
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Figure 1: Ranges of input space in a two-neuron problem that lead to identical
spatiotemporal behavior, de�ned as coding zones. The label of each code, or
spatiotemporal behavior, varies from 1 to 14 in this problem.

Now much larger sequences can be generated, and we would like to see
the ensuing mapping of input space and test the stability of the sequences
to noise. In order to be able to view the results, we choose R3 R4 R5 to lie in
the center of their expected range, as speci�ed by equation 3.1, and study
the system in the R1 R2 plane, limited to their relevant ranges.

First, let us view, in Figure 3, the coding zones of different sequences
in R space. Their average size is 10; that is, there is an order of magnitude
of information compression from R space to the spatiotemporal sequences.
The lengths of the latter are displayed in Figure 4. They include many cycles
of lengths 4, 5, and 6.

The coding zones are the analogs of basins of attraction, which signify
domains of initial conditions that lead to the same attractor. Here, we stay
with a �xed initial condition (the null state) and search for domains in input
space that lead to the same temporal sequence (transition into a cycle).
Note the large number of different sequences obtained in this problem. It is
exponentially larger than the number of �xed points that we are accustomed
to in attractor neural networks (describable by the same dynamics with
symmetric synaptic matrices). We estimate, on the basis of simulations, that
the total number of sequences in the �ve-dimensional R space is of the order
of 3800. In the two-dimensional section of R space shown in Figure 3, we
�nd 38 different sequences, whose lengths are displayed in Figure 4.
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Figure 2: Sequence length of the N D 2 problem mapped on the two-dimen-
sional input space.

Table 1: Six Neighboring Sequences in a System with Five Neurons, Displayed
over Seven Time Steps.

R2 DE DH7 t D 1 2 3 4 5 6 7

¡15 0 0 17 22 6 8 3 17 22
¡12 2 1 17 22 14 8 3 17 22
¡8 4 2 17 22 14 16 3 17 22
¡3 5 10 17 30 16 3 17 30 16

2 6 11 25 30 16 3 17 30 16
8 7 7 25 30 16 11 3 17 30

3.2 Distances Between Codes. The mapping of R space into spatiotem-
poral codes can also serve as de�ning a distance between different codes. It
is thus interesting to compare different sequences generated over a neigh-
borhood of R space, as seen in Table 1. All of these sequences can be read
off as we move along the R2 axis at �xed R1 D 4. The sequences are ordered
according to increasing value of R2, where we indicate the central value
of the coding zone, and the states for each time bin are written in the bi-
nary representation 1 C

P5
iD1 ni25¡i . The columns DE and DH7 describe two

distances, de�ned below, from the �rst sequence.
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Figure 3: Coding zones of spatiotemporal sequences of an N D 5 problem,
plotted on a plane de�ned by two of the input variables. Other inputs are held
constant at their central values.

As one moves along from the �rst sequence to the second, and then to
the third, only one state changes over the observed range of T D 7. More-
over, this change corresponds to the �ipping of just one neuron (n2 at t D 3
between the �rst and second sequence). Proximity in R may therefore be
related to proximity in the identity of states appearing in two sequences,
or proximity in the sense of Hamming distance between all neurons at all
time steps. Thus, we de�ne three distances between sequences: DE is the
“edit distance,” de�ned as the number of insertions and deletions needed
to change one sequence into another, limiting oneself to the natural length
of each sequence, that is, until one of the states reappears. DH is the Ham-
ming difference between the two spatiotemporal patterns of neural activ-
ities. Clearly this grows with the length of the sequence. In the example
of Table 1, where we limit ourselves to seven time steps, we list the corre-
sponding seven-step Hamming distance, DH7. Finally, we may de�ne DR,
the Euclidean distance between the centers of the coding zones in R space.
Table 1 lists the values of DE and DH7 distances from the �rst sequence in
this table. Using 18 sequences of this problem, including the six shown in
Table 1, we �nd a high correlation (0.87) between DE and DR and a lower cor-
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Figure 4: Sequence length of the 38 sequences mapped out in Figure 3.

relation (0.56) between DH7 and DR. The latter signi�es the fact that whereas
the Hamming distance correlates well with R distance for some sequences,
there are cases where several neurons �ip as one moves from one code to
the next. In Table 1, this occurs between the third and the fourth sequences
and between the �fth and the sixth ones. Note, however, that in the fourth
sequence, the state 30 replaces two states, 22 and 14, of the third sequence.
Therefore, DE between the two will be only 3. This explains in what sense
the two sequences should be regarded as close to one another, as also borne
out by the short distance in R.

These results can also be studied from the viewpoint of the individual
neurons. Since the �rst line has the lowest value of R2, none of its states
involves an active neuron number 2, that is, all have n2 D 0. Moving up
to R2 D ¡12, n2 is activated in state 14. At the next stage, it is activated in
state 16. Further increases of R2 lead to activation of neuron number 2 in the
states 30 and 25. Thus, we observe a gradual increase in the number of states
that contain an active neuron number 2. Since the volume of state-space is
relatively moderate, 32, we �nd that in spite of the change in the identity
of the state, for example, a change of 6 to 14 in step t D 3 between the �rst
and the second row, the next state remains 8, and the rest of the sequence is
reiterated. This leads to the good correlation with DE. We believe that this
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property may be useful in DNF applications to the study of problems such
as gene sequences, where low N models may apply.

The correlation between R distance and edit distance may be lost at large
N. The reason is that the volume of state-space grows like 2N . Hence, once
a change occurs in one state, the next transition may point to another state
in this large space, and the ensuing sequence may change completely. Nu-
merical trials in an N D 50 model have shown this to be the case. Thus, the
correlation of nearby sequences, as de�ned by proximity in R space, may
be lost in large neural networks.

3.3 Stability Under Stochastic Dynamics. Next, let us ask how robust
these sequences are against noise. We choose 2 D 0.5, which is where con-
siderable effects may be expected, since this is the lowest absolute value
that the potentials hi can have. As an example, let us look at the probability
of a correct four-step sequence,

P4 D P (F4 | F3)P (F3 | F2 )P (F2 | F1 )P (F1 | 1) , (3.2)

where 1 designates the initial null state. This is the product of the probabili-
ties of obtaining the correct �rst four states of the appropriate deterministic
sequence at a given point in R space. The results for the problem at hand
are plotted in Figure 5 on the same grid of R space as in the two previous
�gures. We see that a few sequences are relatively stable, but others have
a low probability of being correctly recovered during the �rst four steps of
this Markov process.

To exemplify the origins of instability we compare two six-cycles, at
locations (10, ¡10) and (10, 15) of Figures 4 and 5. In Figure 6 we plot
the histograms of the hi values (over all neurons for the �rst four steps of
the dynamics) for these two cases. Clearly, at 2 D 1

2 , the occupancy of the
bins of h D § 1

2 will determine the instability following from equation 2.2.
Since the sequence at (10, ¡10) has three elements in these bins, it is re-
duced to P4 D 0.36. All other sequences in Figure 5 have three elements
in these bins or more. The sequence at (10, 15) has �ve elements in these
bins, as can be seen in Figure 6; hence, its retrieval probability is reduced to
P4 D 0.18.

Let us remark at this point on the Markov chain properties discussed
in section 2.4 and, in particular, the stationary probability distribution p (I)
of equation 2.13. Using the R-space point (10, ¡10) as an example, we �nd
that the following states are the most probable ones: 17, 22, 30, 32. Their
respective probabilities are 0.106, 0.175, 0.173, 0.169. In the problem at hand,
we start with state 1 as the initial condition, looking for the sequence 1 !
17 ! 22 ! 30 ! 32. The relevant transition probabilities for the terms in
equation 3.2 are 0.98 £ 0.95 £ 0.73 £ 0.53, leading to P4 D 0.36. Obviously,
the major reduction of the probability occurs at the �rst two steps, from
state 1 to 17 and from 17 to 22. This is also where the three appearances of
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Figure 5: Probability of recovering correctly the �rst four time steps in the se-
quences of Figures 3 and 4 when stochastic dynamics is being used with 2 D 0.5.

h D § 1
2 occur: two of them affect the transition of 1 to 17, and one occurs in

the transition from 17 to 22.

3.4 Entropy of the Markov Chains. Finally, we show in Figure 7 an
analysis of the entropy of the different Markov chains of this system. This
is done for 2 D 0.5 and can be compared with the P4 results in Figure 5. The
Markov chains with low entropy are the ordered ones, leading to a relatively
high probability of correct retrieval of the �rst four states. The chains with
high entropy are the disordered ones, leading to a low probability of correct
retrieval.

4 The Inverse Problem

The previous section exhibited examples of what may be called the di-
rect DNF problem: given a matrix w and a set of R values, solve the dy-
namics of equation 2.1, and generate the resulting sequence. We now wish
to pose an inverse problem: given a set of several sequences, �nd a cor-
responding DNF, that is, values of w and R that can produce this set.
There are two parts to this question. First, does a solution exist? Second,
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Figure 6: Histograms of hi values of two six-cycles in the N D 5 problem.

Table 2: Six Spatiotemporal Sequences De�ned for Four Time Steps in a System
with Four Neurons.

t/ k 1 2 3 4 5 6

1 1 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0
2 1 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 0
3 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 1
4 0 0 0 1 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1

if the problem is soluble, �nd an example. This may be expanded into
a search for all possible solutions, which lies outside the scope of this
work.

4.1 The Existence Problem. Suppose a given data set comprises K dif-
ferent spatiotemporal sequences of length T each, presented as activities
of N neurons. An example is shown in Table 2 for K D 6, T D 4 in a
system with N D 4 neurons. We wish to �nd out if there exists a DNF
such that this set of sequences is elicited by K different inputs Rk

i , k D
1, . . . , K.
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Figure 7: Entropy of the Markov chains corresponding to the sequences of Fig-
ures 3 and 4 when stochastic dynamics is being used with 2 D 0.5.

The neuronal values may be labeled nk
i (t) , t D 1, . . . , T. Each time step,

for each sequence, de�nes a state of the system

|k, ti D fnk
i (t)giD1, ...,N. (4.1)

Twenty-four such states can be seen in Table 2, some of them identical, yet
no identical states appear in a single sequence. Each state |k, ti follows from
the previous state |k, t ¡1i through deterministic dynamics. The initial state
|k, 0i is chosen as the null state nk

i D 0 for all i D 1, . . . , N and k D 1, . . . , K.
Consider a single neuron i in this system. We may then reduce the ques-

tion posed here into a perceptron problem for this neuron. The neuron is
given KT initial vectors (counting states from t D 0 to t D T ¡ 1) and its
required output values nk

i (t) (from t D 1 to t D T for all k D 1, . . . , K).
It has to perform calculation 2.1 given a different input Rk

i for each of the
K sequences. To take account of the K different inputs (biases), we extend
the vector states of length N to new vectors of length N C K through the
concatenation

|k, t) D |k, ti £ fda,kgaD1, ...,K, (4.2)

where da,k is the Kronecker delta function obtaining the value 1 for a D k
and 0 otherwise. The extension by K bias axes allows us to represent the
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deterministic dynamics, for each neuron i, as KT perceptron inequalities in
an N C K dimensional system. These can be strictly met (Hertz et al., 1991)
for N obeying

A: KT · N C K or K (T ¡ 1) · N. (4.3)

In the large N limit, one can apply the Cover result (Cover, 1965), saying
that a solution may be found for

B: KT · 2(N C K) or
1
2

K (T ¡ 2) · N. (4.4)

For the example of Table 1, the strict condition A implies N ¸ 18, and
condition B leads to N ¸ 6. This could mean one should extend the system
shown in Table 2 by at least two, if not more, neurons. Nonetheless, one
can obtain a solution for N D 4. This is due to the fact that the states in
this table were not chosen in a random and independent fashion.2 Note
also the example discussed in section 3.1. Thirty-three of the 38 sequences
in Figure 4 have length 4 or more. Counting only the �rst four states, we
�nd 22 different sequences, many more than conditions A and B would
suggest. This is so because we did not ask in section 3.1 for the matrix
that can produce an arbitrary choice of states appearing in K sequences of
length 4, but counted how many different sequences were produced by a
given matrix. These sequences turned out to be quite similar to one another,
as described in section 3.2.

Thus, conditions A and B should be regarded as suf�ciency conditions,
assuring us A that a solution must exist and B that it may be found for lower
N. With more effort, one can try to solve the inverse problem, that is, �nd
an explicit matrix w, for yet smaller N.

4.2 Perceptron Learning. From our approach to the existence problem,
it should be quite evident that if a solution exists, it may be obtained us-
ing a straightforward extension of the Rosenblatt algorithm (Rosenblatt,
1962; Hertz et al., 1991). We describe it in this section, realizing explictly the
abstract vectors in N C K dimensions described in the previous section.

Let us start by de�ning, for each neuron i, an N C K–dimensional vector
of perceptron weights Ewi,

( Ewi) j D wij for jD 1, . . . , N ( Ewi) NCk D Rk
i ¡hi for k D 1, . . . , K. (4.5)

The sequence states of interest will be represented by vectors Exi,k (t) , for
neuron i, living in the same N C K–dimensional space but carrying further

2 The rationale for the choice of states in Table 2 is discussed in section 5.3.
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indices of k and t as follows:

(Exi,k (t) ) j D nk
j (t) (2nk

i (t C 1) ¡ 1) for jD 1, . . . , N, tD 0, . . . , T ¡ 1 (4.6)

(Exi,k (t) ) NCa Ddak (2nk
i (t C 1) ¡ 1) for a D 1, . . . , K.

In other words, the vectors Exi,k (t) represent the states weighted by a positive
or negative sign depending on whether the target neuron i at the next time
step will be 1 or 0, respectively. With these de�nitions, all constraints of the
inverse problem can be written as KT perceptron inequalities:

Ewi ¢ Exi,k (t) > 0 for all k D 1, . . . , K, t D 0, 1, . . . , T ¡ 1. (4.7)

We propose to use the perceptron learning rule (Hertz et al., 1991),

D Ewi D gExi,k (t)H (¡ Ewi ¢ Exi,k (t) ) , (4.8)

while iterating the system, time and again, over all KT states. The Heaviside
function guarantees that Ewi gets modi�ed at a given iteration by the vectors
Exi,k (t) that do not satisfy the inequality. This algorithm converges (Hertz et
al., 1991) if the system of inequalities is soluble.

Moreover, one can use the same algorithm to require stability under
stochastic dynamics by insisting on a margin M in the perceptron inequali-
ties:

Ewi ¢ Exi,k (t) > M. (4.9)

This leads to the learning rule:

D Ewi D gExi,k (t)H (¡ Ewi ¢ Exi,k (t) C M) . (4.10)

In section 3, where we used integer values of w and R and kept allh D 1
2 , we

worked with an implicit margin of size 1
2 . This is the reason that testing the

system with stochastic dynamics of 2 D 1
2 , we found considerable effects.

Insisting on larger M, if the data allow it, will guarantee stability for larger
ranges of 2 . Given a situation of the type encountered in Figure 5, one may
want to improve the robustness of a possible code, such as the one located at
(10,15) in the R plane. This can be tried by applying the algorithm presented
by the previous equation for a suitably chosen M. The size of M is, of course,
limited by the data. (For a general discussion of optimal margin selection,
see Vapnik, 1995.)

If the algorithms are implemented withg D 1, they lead to integer values
of w and R ¡h . An arbitrary choice ofg < 1 can lead to continuous h values.
It is then advisable to keep a �nite M to ensure some robustness to noise.

Finally, we wish to comment that one may apply in a similar manner the
Ho-Kashyap procedure (Duda, Hart, & Stork, 2001), indicating, if it does
not converge, that a given set of data is not linearly separable.
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5 Capacity and Complexity

5.1 Capacity of Codes of Given Length. The DNF produces sets of spa-
tiotemporal codes. Its capacity could be measured by the number of codes
it can produce. This is a very large number and may not be very mean-
ingful if we consider an application with stochastic dynamics. Moreover,
what would be really interesting is a measure of capacity of random codes,
expected to be very distant from one another. Clearly, two codes that are
close will not constrain the system. If one is learned, some other close-by
codes will be automatically produced for nearby R values.

Suppose we look for the number of codes of length T such that the same
state does not appear twice, either within the same code or among the
different codes. This would be the case if the states are chosen randomly
from all 2N possibilities of an N-neuron system. Following the reasoning of
section 4.1, this number can be expected to reach

CT ¼
2N

T ¡ 2
(5.1)

if criterion B is applied. CT may be viewed as a capacity measure of a DNF.
Note that the last equation leads to CT D 1 for T D 2N C 2. This means

that a DNF of order N may be expected to accommodate a cycle of length
2N C 2. The latter may then be used to construct the DNF.

5.2 Random Synaptic Weights. There exist synaptic matrices that do
not have the ability to generate large cycles. It is well known that symmetric
matrices w lead to �xed points or two-cycles and antisymmetric matrices
may lead up to four-cycles only (Peretto, 1992). Ingeneral, however, a system
of N neurons may generate large cycles, limitedby the total number of states,
2N. Gutfreund, Reger, and Young (1988) have shown that for Ri D 0, large
cycles are generated when values of wij are chosen randomly from a gaussian
distribution centered at zero and thresholds hi D 1

2

P
j wij ¼ 0.3 This was

further studied numerically by Nützel (1991), who pointed out that large

cycles can be obtained for some range of the asymmetry a D
P

ij
wijwjiP

ij
wijwij

around

the point 0 of random asymmetry.4 The average size of the cycles grows as
an exponential in N, with an exponent that increases as the asymmetry

3 Related questions within the framework of Ising spin systems have been studied by
Crisanti and Sompolinsky (1988).

4 This de�nition of asymmetry differs from the parameter used by Gutfreund et al.
(1988) and Nützel (1991), but it shares the relevant characteristics of varying between 1
and ¡1, with the extremes characterizing the symmetric and antisymmetric cases. The
completely asymmetric case corresponds to a D 0. The example of the �ve-dimensional
matrix in section 3 has a D ¡0.4067.
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Table 3: Binary Odor Coding.

t/ k 1 2 3 4 5 6

1 1 1 1 0 1 1 1 0 1 0 1 0
2 1 1 1 1 1 1 1 0 1 0 1 1
3 1 1 1 1 0 1 0 1 1 1 0 1
4 0 0 0 0 0 0 0 1 1 1 0 0

approaches zero. A system with a similar structure but slightly different
dynamics was studied by McGuire, Littlewort, and Rafelski (1991).

Working with nonzero R values in our DNF, we noted that the interesting
large cycles occur around the center of the relevant range of R. This is where
the average effect of the inputs cancels the average effect of the synaptic
weights, in agreement with the observations of Gutfreund et al. (1988). Thus,
we expect, for any given N, that matrices w that have large capacities CT for
large T have a random-like distribution of synaptic values. We are, however,
content even with cyclesof order N, as is the case ofour examples in section3.
Note that in the locust antennal lobe (see section 2.1), hundreds of neurons
are participating in the real biological system. Hence, it is quite reasonable
for it not to display cyclic behavior over the few LFP bins over which it is
measured.

5.3 An Example: The Wehr-Laurent Experiment. We return now to the
example that motivated our investigation. Wehr and Laurent (1996) dis-
play in Figure 3 of their article the response of two speci�c neurons to nine
mixtures of odors. Signi�cant results were obtained during the �rst four
reverberations of the local �eld potential. They can be presented as six dif-
ferent binary codings, shown in Table 3, three of which appeared twice in
the nine odor mixtures. Each of the six columns speci�es the state of activity
of the observed pair of neurons for one of the six spatiotemporal codes.

Looking at the �rst column, it is clear that it cannot be produced by a DNF,
where states at time t are determined by states at t ¡1, unless it possesses at
least two hidden neurons. Hence, we conclude that this should be treated
as a T D 4, K D 6 problem. Looking for a system with C4 ¼ 6, we know
we can do it with N D 18 (using condition A), but may expect to be able
to do it with N D 6 (using condition B) or less. It turns out we can do it
with N D 4. A set of states of four neurons, which accommodate the two
observed neurons of Table 3, is given in Table 2. The latter was constructed
by choosing states of hidden neurons by trial and error until all perceptron
inequalities were satis�ed, ensuring the existence of DNFs with matrices w
and inputs Rk that can generate this table. Thus, we are able to implement
the binary odor coding of Wehr and Laurent (1996) in an N D 4 model.
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5.4 Minimal DNF as Measure of Complexity. The example of the Wehr-
Laurent experiment raises the possibility of using the DNF model to de�ne
the complexityof a spatiotemporaldata set. This degree of complexitycan be
characterized by the minimalnumber of neurons N needed to accommodate
the data within a DNF. From the discussion in the previous paragraph we
conclude that the Wehr-Laurent problem of Table 3 has DNF complexity of
degree 4.5

6 Discussion

The problem of odor spatiotemporal encoding was recently reviewed in
detail by Laurent et al. (2001). As a theoretical model, these authors sug-
gest “winnerless competition,” a concept that was expanded in Rabinovich
et al. (2000, 2001). Basing their intuition on Lotka-Volterra equations they
point out that for suitably chosen parameters, there exist heteroclinic orbits
connecting all N attractors of the N-dimensional system, which are very
sensitive to external inputs. They studied systems of FitzHugh-Nagumo
neurons that exhibit spatiotemporal sensitivity to external inputs as a neu-
ral implementation, but made no attempt to �t a particular data set such as
the one of Wehr and Laurent (1996).

In comparison, we use a binary model with discrete dynamics, but never-
theless we claim that it is relevant to the observed data. The reason is that the
periodic LFP in the antennal lobe provides a temporal scale that accounts
for speci�c time bins, and allows discrete coding, as observed by Wehr and
Laurent (1996). With a DNF model that �ts these data, one can envisage a
model of spiking neurons capable of mimicking the experimental results
(Quenet, Dubois, Sirapian, Dreyfus, & Horn, in press). This can be done by
imposing overall periodic inhibition that allows for action potentials during
periodic time windows and by �tting synaptic delay parameters to match
the same windows.

Recently Friedrich & Laurent (2001) have observed spatiotemporal odor
representations in the olfactory bulb of zebra�sh. This system also has a re-
verberating local �eld potential and mitral cells that �re in coincidence with
it. The authors have studied the response of this system to similar odors,
characterized by small changes in molecular structures of the relevant chem-
icals. One of their interesting results is that the correlation between temporal
patterns of similar odors over the mitral cells reduces with time (between
the �rst and second 500 ms after odor presentation). This contradicts the
expectation that short distances in R space lead to high correlations be-
tween the spatiotemporal sequences. The reason is the large value of N in

5 Obviously this should be regarded as a mathematical statement and may have noth-
ing to do with the biological reality. In the antennal lobe, one �nds excitation of hundreds
of PNs during each odor presentation.
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this system. Since the volume of state-space is 2N , once a change in a se-
quence occurs, it may lead to a new sequence uncorrelated with the old
one.

Our model can be compared with recent work by Maass, Natschläger,
and Markram (in press), who propose a recurrent neural network that per-
forms what they call “liquid computation.” Their network is composed of
spiking neurons and is structured in two stages: (1) a �lter transforming spa-
tiotemporal input into spatiotemporal behavior of the network and (2) the
activation of a readout map. Thus, this network projects spatiotemporal in-
put into an output representation that is spatial in nature. Although these
authors put special emphasis on real-time learning based on perturbations,
the common feature of their approach and ours is the use of a �lter pro-
jecting from an input to an output space. Whereas in our model the input
space is spatial and the output space is spatiotemporal, their model goes in
the opposite direction. However, in general, both models can connect spa-
tiotemporal spaces to one another, and both use neural networks as �lters,
performing computations that are different from the conventional major
paradigms. Our model is based on binary mathematical neurons, whereas
Maass et al. (in press) deal with more realistic neural behavior. Neverthe-
less, the advantage of our DNF is that its structure can be made explicit,
thus allowing full understanding of its operation and capabilities. Among
other things, we can use this understanding to solve an inverse problem:
construct a DNF that produces a given repertoire of spatiotemporal data.
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