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Abstract

We present the theoretical results about the construction of confidence intervals for a nonlinear regression based on least squares
estimation and using the linear Taylor expansion of the nonlinear model output. We stress the assumptions on which these results are
based, in order to derive an appropriate methodology for neural black-box modeling; the latter is then analyzed and illustrated on simulated
and real processes. We show that the linear Taylor expansion of a nonlinear model output also gives a tool to detect the possible ill-
conditioning of neural network candidates, and to estimate their performance. Finally, we show that the least squares and linear Taylor
expansion based approach compares favorably with other analytic approaches, and that it is an efficient and economic alternative to the
nonanalytic and computationally intensive bootstrap meth@d2000 Elsevier Science Ltd. All rights reserved.

Keywords Nonlinear regression; Neural networks; Least squares estimation; Linear Taylor expansion; Confidence intervals; lll-conditioning detéetion; M
selection; Approximate leave-one-out score

1. Introduction in the past years (Efron & Tibshirani, 1993). These
nonanalytic methods have been proposed to build Cls for
For any modeling problem, it is very important to be able neural networks (Heskes, 1997; Paass, 1993; Tibshirani,
to estimate the reliability of a given model. This problem 1996), but with the shortcoming of requiring a large number
has been investigated to a great extent in the framework of of trainings.
linear regression theory, leading to well-established results This paper presents an economic alternative to the
and commonly used methods to build confidence intervals construction of Cls using neural networks. This approach
(Cls) for the regression, that is the process output expecta-being built on thdinear least squares (LS) theory applied to
tion (Seber, 1977); more recently, these results have beerthe linear Taylor expansion (LTE) of the output of nonlinear
extended to nonlinear models (Bates & Watts, 1988; Sebermodels, we first recall how to establish Cls for linear models
& Wild, 1989). In the neural network modeling studies in Section 2, and then approximate Cls for nonlinear models
however, these results are seldom exploited, and generallyin Section 3. In Section 4, we exploit these known theore-
only an average estimate of the neural model reliability is tical results for practical modeling problems involving
given through the mean square model error on a test set; buneural models. We show that the LTE of a nonlinear
in an application, one often wishes to know a Cl at any input model output not only provides a Cl at any input value of
value of interest. Nevertheless, thanks to the increase ofinterest, but also gives a tool to detect the possible ill-condi-
computer power, the use of bootstrap methods has increasedioning of the model, and as in Monari (1999) and Monari
and Dreyfus (submitted), to estimate its performance
* Corresponding author. Tel+33-1-40-79-45-45; fax+33-1-40-79-44- through an appr(.)an.atel leave-one-out ,(LOO) .score. _A
o5, real-world illustration is given through an industrial appli-
E-mail addressisabelle.rivals@espci.fr (1. Rivals). cation, the modeling of the elasticity of a complex material
Current address: dtiipe de Statistique Applidee Ecole Supeieure de from some of its structural descriptors. Section 5 compares
Physique et de Chimie Industrielles, 10 rue Vauquelin, 75231 Paris Cedexthe LS LTE approach to other analytic approaches, and
05, France. _ , discusses its advantages with respect to bootstrap
Abbreviations Cl: confidence interval; LOO: leave-one-out; LS: least approaches.

squares; LTE: linear Taylor expansion; SISO: single input—single output; ) . .
MISO: multi input—single output; MSTE: mean square training error: We consider single-output models, since each output of a

MSPE: mean square performance error. multi-output model can be handled separately. We deal with

0893-6080/00/$ - see front matt€r 2000 Elsevier Science Ltd. All rights reserved.
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Nomenclature

We distinguish between random variables and their values (or realizations) by using upper- and lowercase lefters; all
vectors are column vectors, and are denoted by boldface letters; nonrandom matrices are denoted by light lowercase letters

X Nonrandomn-input vector

Yo = Yp|x Random scalar output dependingon

E(Yplx) Mathematical expectation, or regression functionYpgiven x

W Random variable with zero expectation denoting additive noise

a? Variance ofw

{x*,¥i}i=11on Data set ofN input—output pairs, where thex{} are nonrandomn-vectors, and the s} are the
corresponding realizations of the random outpl)(é £ Yp|xk}

{76, @ € R"} Family of linear functions ofx parameterized by

0, Unknown trueg-parameter vectorg(= n in the linear case)

x=[x*x*...x"]" Nonrandom K,n) input matrix

Y, =1[Ys Yz ... ;1" RandomN-vector of the outputs of the data set

W= [W*W? ... W']T RandomN-vector withE(W) = 0

J(0) Value of the least squares cost function

O Least squares estimator 6f

0.s Least squares estimate @f

R=Y, —x@ s Least squares residual randdvector in the linear case

r Value of R

»(X)  Range ofx (linear manifold)

Px Orthogonal projection matrix om.(x)
53 Estimator ofo?

s Value of &

{f(x,0), 6 € R Family of nonlinear functions ok parameterized by
f(x,8 N-vector[f(x}, 0)...f(x%, 0)...fxN, 9)]"

R=Y, - f(x, @) Least squares residual randdwector

¢=1£" £ ... £"1" Unknown nonrandomN,q) matrix with £ = of (x*, 6)/06]¢_g,
»(€)  Range of¢é

o) Orthogonal projection matrix on.(§)

z=[z'7Z ...2"]" Matrix approximating¢ with z* = of (x*, 0)/3 6|,
»(2)  Range ofz

P, Orthogonal projection matrix om.(2)

In (N,N) identity matrix

0{‘2 Leave-one-out (th&th example) least squares estimatefpf
{e"} k=1toN L€ave-one-out errors

n, Number of hidden neurons of a neural network
H Random Hessian matrix of the cost function
h Value of the Hessian matrix of the cost function

var(m),ef Reference variance estimate

var(m)LTE LTE estimate of the variance of a nonlinear model output
var(f(x, @s)nessian HESSIanN estimate of the variance of a nonlinear model output
var(m)sandwich Sandwich estimate of the variance of a nonlinear model output

Abbreviations

Cl confidence interval
LOO leave-one-out

LS least squares

LTE linear Taylor expansion

SISO  single input - single output
MISO multi input - single output

MSTE mean square training error
MSPE mean square performance error
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where 6, is an unknownn-parameter vector. Model (2)

RN w associated to the data set leads to:
Y,
g /ﬁ Yo = X0, + W 3)
EY,)=x6, r Dy W
x where x = [x! x* ...xN]" is the nonrandom N,n) input
X6, matrix, Y, =[Yy Y7 ... 31" and W = W' W? ... W'

are randomN-vectors, withE(W) = 0. Geometrically, this
means thaE(Yp|x) = X0, belongs to the solution surface,
Fig. 1. Geometric representation of the linear LS solution (true assumed the linear manifold.«(x) of the observation spac®"
model). spanned by the columns of the input matr{the range of

X). We assume thai(x) is of dimensiom, that is rankx) =
static modeling problems for the case of a nonrandom (noisen. In other words, the model is identifiable, i.e. the data set
free) ninput vector x =[x X, ... %,]', and a noisy is appropriately chosen, possibly using experimental
measured outpuy, which is considered as the actual design.
value of a random variabl¥, = Yy|x depending orx. We
assume that there exists an unknown regression function2.1. The linear least squares solution

E(Y,|x) such that for any fixed value of ) o N
The LS estimate@ s of 0, minimizes the empirical

Yplx = E(Yp[x) + W|x Q) guadratic cost function:

whereW|x is thus a random variable with zero expectation. N

A family |of parameterized functions {x, 0), x € R", 8 € IO =3 0~ X0’ =30 —xO (Y, —x0) (4
R% is called anassumedanodel. This assumed model is said k=L

to betrue if there exists a valu@, of 8 such that¥x in the The estimatef) s is a realization of the LS estimat@®, s
input domain of interest,(x, 6,) = E(Yp|x).klr;kthe follow- whose expression is:

ing, a data set oN input—output pairs X*, Yp} k=1 ton IS o T-1.Tv To—1.T

available, where thex* = [X{x ... X7 arepnonrandom OLs = (XX X Vp = b + (XX XW ©)
n-vectors, and the\} are the corresponding realizations As the assumed model is true, this estimator is unbiased.
of the random Val‘i’dlblt-Z‘SY{l:,< = Yp|Xk}.1 The goal of the The orthogonal projection matrix oms(x) is py =
modeling procedure is not only to estimate the regressionx(x'x)"x". It follows from Eq. (5) that the unbiased LS
E(Yp|x) in the input domain of interest with the output of a estimator ofE(Yp|x) is:

model, but also to compute the value of a Cl for the regres-
sion, that is the value of a random interval with a chosen
probability to contain the regression. For the presentation of that is the sum oE(Y,|x) and of the projection ofV on
the results of linear and nonlinear regression estimation, we ,,(x), as shown in Fig. 1. LeR denote the residual random

deal with the true mOdE" (a quel WhICh is Iinqar in th.e N-vectorR =Y, — Xx0@, s, that is the vector of the errors on
parameters in Section 2, a nonlinear one in Section 3), i.e.the data set, then:

we consider that a family of functions containing the regres-

sion is known. In Section 4, we consider the general realistic R=(n = poW )

case of neural black-box modeling where a preliminary ynder the assumption that th&\{} are identically distrib-
selection among candidate neural models is first performedyted and uncorrelated (homoscedastic), i.e. the noise covar-
because a true model is not known a priori. iance matrix isK(W) = &Iy, it follows from Eq. (5) that

the variance of the LS estimator of the regression for any
input x of interest is®

XOs = X0, + pW (6)

2. Confidence intervals for linear models

varx' 0,s) = o> (x"x) " 1x (8)

We consider a true linear assumed model, that is the
associated family of linear functionsx{, x € R", 6 €

R"} contains the regression; Eq. (1) can thus be uniquely 9 R'R

Using Eg. (7), we obtain the unbiased estimator

rewritten as: - N—n

Yolx = x" 6, + W|x 2 of 0% the corresponding (unbiased) estimate of the variance
1 We recall that we distinguish between random variables and their 2 .(X) is sometimes called the “expectation surface” (Seber & Wild,

values (or realizations) by using upper and lowercase Ietters,Yé.gnd 1989); as a matter of fact, the solution surface coincides with the expecta-

y‘;,; all vectors are column vectors, and are denoted by boldface letters, e.g.tion surface only when the assumed model is true.

the n-vectorsx and {x}; nonrandom matrices are denoted by light lower- % We recall thak (boldface) is ther, 1) input vector of interest, and that

case letters (except the unambiguous identity matrix). x is the experimentalN, n) input matrix.
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Fig. 2. ClI for process #1, a simulated linear SISO process (true assumed modekEn2tparameters): (a) regression (thin line), data set (crosses), model
output and 99% ClI (thick lines); and (b) true variance (thin line) and LS estimate of the variance (thick i@ af

of x'@,g is thus: E(Y,/x) and o appear:
TTE ) — 2T Ty 1
varxT 0.s) = X" (x"x) " x 9) xTOs — E(Yylx) NGO .
wheres is the value ofS. X T(xXTx) " Ix '
2.2. Confidence intervals for a linear regression Thus, using the Pearson variable (11), which is independent

from Eq. (12) according to Theorem 3, we obtain the follow-
If the {Wk} are homoscedastic gaussian variables, that is ing Student variable:
W — Ny, o?ly) :

X' Os — E(Y,|x)

SYXT(XTx) " 1x

A 100(1— a)% CI for E(Y,|x) is thus:

Theorem 2. T _ @ s/ Ty Ty —1
X BLSitN,n<1 5) X' (X X)X (14

T
BRR 1y o ,

o wherety_, is the inverse of the Studeh(- n) cumulative
distribution.

Note that Eq. (14) allows to compute a CI corresponding
to any input vector, and that it is much more informative
than average values such as that the mean square error on
The proof of the above theorems follows from Fig. 1 and the data set, or the mean of the variance estimate over the

from the Fisher—Cochrane theorem (Goodwin & Payne data sef; as a matter of fact, the latter invariably equals
" SN

1977), see for instance (Seber, 1977).

The goal is to build a CI for the regression value
E(Yp|x) = xTop, for any input vectorx of interest. The
variance of the measurement$ being unknown, let us  y Skee SOOI X = & T [pduc = gjtracep,). As py s the
build a normalized centered gaussian variable where bothorthogonal projection matrix on &dimensional subspactace(p,) = n.

Theorem 1. — StudentN — n) (13

Os — 0, — N0, o’ X0 h (10

Theorem 3. @, is statistically independent froR'R.

4 The mean of the variance estimate over the training data set is:
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RN M (&) is tangent to 9N (f(x, 6))
at this point (6 = Op)

r
/ ,«':E(Yp)ff(x,ep)

f(x,0.5)

TN ((x, 6))

Fig. 3. Geometric representation of the nonlinear LS solution and of its LTE approximation (true assumed model).

2.3. Example of a simulated linear SISO process surface, the manifold..(f(x, 8) ={f(x,0), 6 € RY} of
(process #1) RN.
We consider a simulated single input-single output 3.1. The linear Taylor expansion of the nonlinear least
(SISO) linear process: squares solution
Vi = 6, + 6, X + W k=1toN (15) A LS estimate@,s of @, minimizes the empirical cost
function®

We take §, =1, 6, =1, o>= 05 N =30 The inputs "

{xk} of the data set are uniformly distributed in-BB; 3], 30 = 1 K 02 = Loy — x0T (V. — F(x 0
as shown in Fig. 2a. The family of functiong,{+ 6,x, 6 € =2 k;(y‘k’ 05 07 = 3 0p = 1O O 0 = 10X 0
R} is considered, that is the assumed model is true, and we (18)
choose a confidence level of 99%g(1%) = 2.76). The LS
estimation leads t&* = 0.29, i.e. underestimates the noise . X s LS
variance. Fig. 2b displays the estimate (9) of the variance of Efficient algorithms are at our disposal for the minimization
x@_s, and the true variance (8). The estima&rof the of the cost function (18): they can lead to an absolute mini-
noise variance being unbiased, the difference between theum. but they do not give an analytic expression of the

estimated variance (9) and the (usually unknown) true estimator that could be used to build Cls. In order to take
variance (8) is only due to the particular values of the advantage of the results concerning linear models, it is

measurement noise. Fig. 2(a) shows the regressionWorthwhile considering a linear approximation @
E(Y,|x), the data set, the model output and the 99% CI for which IS obtained by writing the LTE of(x, 0) around
the regression computed with Eq. (14). f(x, 6p):

The estimatd s is a realization of the LS estimat®, s.

d [ of(x, 0
f(x, 0) = f(x, 05 + > ( ;); ) (6, — epr))
3. Approximate confidence intervals for nonlinear r=1 role=6,
models
=f(x,0,) + £'(0— 6 (19
We consider a family of nonlinear functions(k, 8), x € where
R", # € RY which contains the regression, that is the 5 (x. 0
assumed model is true; Eq. (1) can thus be rewritten as:  ¢= (axa )‘
0=0,
Yol = (. 6) + Wi (16 Thus, with the matrix notation:
where@, is an unknowrg-parameter vlector. We kdenote by f(x,0) =~ f(x 0, + &6 — 6,) (20)
f(x,0y,) the unknown vector [f(x", 6,)...f(X", 6,)...
fxN, 49,))]T defined on the data set, thus: where
_ 1¢£2 N4T
Y, ="f(x 6, +W 17 §=1£¢6..87]
As in Section 2)( denotes theN'n) input matriX,S and Yp % In the case of a multilayer neural network, the minimum value of the

cost function can be obtained for several values of the parameter vector;

but, since the only function-preserving transformations are neuron

exchanges, as well as sign flips for odd activation functions like the hyper-

- bolic tangent [Sussman 1992], we will legitimately consider the neighbor-
® In the case of a nonlinear modeljs merely a two-dimensional array. hood of one of these values only.

and W are randomN-vectors withE(W) = 0. Geometri-
cally, this means thaE(Yp|x) belongs to the solution
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af (XX
K (X%, 0)
£="20
0=0,

The (N, g) matrix ¢ is the nonrandom and unknown (since
0, is unknown) Jacobian matrix ¢f Using Eq. (20), one
obtains, similarly to the linear case, the following approx-
imation of @ s (see Appendix A.1 for a detailed derivation
of Egs. (21) and (23)):

O~ 0, +(ETHETW (1)

The rangex(¢) of ¢ is tangent to the manifold.(f(x, 0)
at @ = 0,; this manifold is assumed to be of dimensign
hence rani) = g. The matrix p; = ETHTET is the
orthogonal projection matrix on.(¢). From Egs. (20) and
(21), the LS estimator oE(Y,[x) can be approximately
expressed by:

f(X, @LS) =~ f(X, 0p) + pg W (22)

i.e. it is approximately the sum E(Yp|x) and of the projec-
tion of W on (&), as illustrated in Fig. 3. IK(W) = Iy
(homoscedasticity), the variance of the model output, that is
the LS estimator of the regression, for an inputis
approximately:

var(f(x, OLs)) = o2£7(£T¢ 1

In the following, approximation (23) will be termed “the
LTE approximation” of the model output variance. LRt
denote the LS residual vect® =Y, — f(x, fs), thus:

R=(Iy — pdW (24

(23

Under the assumption of appropriate regularity condi-
tions onf, and for largeN, the curvature of the solution
surfacé #(f(x, 0)) is small; thus, using Eq. (24), one
obtains the asymptotically (i.e. whéh— o) unbiased esti-
matorS = (R'R)/(N — q) of ¢ In Eq. (23), the matrix
takes the place of matrixin the linear case. But, as opposed
to x, & is unknown since it is a function of the unknown
paramete®,. The (N, g) matrix £ may be approximated by

z=[22.. 2N
where

S af (XK, )

a0 0—0.

that is

4= af (XK, @)

a6, (25

0=0.5

In the following, we assume that raf@x= q. Like the

” The curvature is usually decomposed in two components: (i) the intrin-
sic curvature, which measures the degree of bending and twisting of the
solution surface«(f(x, #)), and (ii) the parameter-effects curvature, which
describes the degree of curvature induced by the choice of the parafheters

Networks 13 (2000) 463—-484

matrix &, the vectoré is not available, and its value may
be approximated by:
of (x, 0)
Z=
a0

(26)
0=0.5
From Egs. (23), (25) and (26), the LTE estimate of the
variance of the LS estimator of the regression for an input
X is thus:

var f&’\@LS))LTE =72 'z

@n

3.2. Approximate confidence intervals for a nonlinear
regression

If W — Ny(0, o2ly), and for largeN, it follows from the
above relations and from the linear LS theory (Seber &
Wild, 1989) that:

Theorem 4.

Ors ~— Ny(0,, 7% ETH ™ (28)
Theorem 5.

R'R

7 ~— Xﬁfq (29)

Theorem 6. @5 is approximately statistically indepen-
dent fromRR.

Using Egs. (23) and (28), let us again build a quasi-normal-
ized and centered gaussian variable where E(M,g|x) and
o appear:

f(x, Os) — E(Ypl0)
o ET(ETH E

Thus, the variable (29) being approximately independent
from Eq. (30) according to Theorem 6, we have:

— N(0, 1) (30)

f(x, Os) — E(Yph)

— StudentN — q) (31
SVET(ETH ¢
A 100(1 — «)% approximateCl for E(Yp|x) is thus:
f(x, Os) = tN_q(l - %)a/zT(sz)‘lz (32

Note that, wherN is large, the Student distribution is close
to the normal distribution, and thtg (1 — 5) = n(1 — 9),
wheren is the inverse of the normal cumulative distribution.
Like in the linear case, Eq. (32) allows to compute a Cl at
any inputx of interest, which gives much more information
than the value of the mean variance estimate over the data
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Fig. 4. Cl for process #2, a simulated “neural” SISO process (the assumed model, a two hidden neurons neteyetl/\peinameters, is true): (a) regression
(thin line), theN = 50 examples of the data set (crosses), model output and 99% approximate ClI (thick lines); and (b) reference (thin line) and LTE (thick line)
estimates of the variance f{k,0s).

set: as a matter of fact, the latter always approximately Thus, ifN is large: (i) as in the linear case, the estimator of
equalss’(g/N). the noise varianc&’ is unbiased, and the difference between
From a practical point of view, the construction of a CI s? ando? is only due to the particular values of the noise;
for a neural model output at any inpubf interest involves and (i) the variance dfx, @s) is small, and, s is likely to
once and for all the computation of the matrixhat is the be close td,: zandz are thus likely to be good approxima-
N X g partial derivatives of the model output with respect to tions of, respectively¢ and &. A reliable estimate of a Cl
the parameters evaluated # s for the data inputs  may thus be obtained from the LTE variance estimate (27).
{x*} 1 1o n» @nd, for eachx value, that of, i.e. the deriva- On the other hand, iN is too small: (i) as opposed to the
tives atx. In the case of a neural model, these derivatives are linear case, even if the assumed model is true, the estimator
easily obtained with the backpropagation algorithm. of the noise variancg’ is biased; and (ii) the variance f¢x,
All the previous results and the above considerations are @) is large, and s is likely to differ from 0,: zandzrisk
valid provided an absolute minimum of the cost function to be poor approximations &f and £. Thus, if N is diag-
(18) is reached. In real-life, several estimations of the para- nosed as too small, one cannot “have confidence” in the
meters must thus be made starting from different initial confidence intervals (32), and additional data should be
values, the estimate corresponding to the lowest minimum gathered.
being kept in order to have a high probability to obtain an
absolute minimum. In the examples of this work, the algo- 3.3.2. Quantitative analysis
rithm used for the minimization of the cost function is the As detailed for example by Antoniadis, Berruyer and
Levenberg algorithm, as described for example in Bates andCarmona (1992), Bates and Watts (1988) and Seber and
Watts (1988), and several trainings are performed. The Wild (1989) different measures of the curvature can be
probability of getting trapped in a relative minimum computed, and can be used in each particular case to eval-
increasing with the number of parameters of the network uate the accuracy of the LTE. In Section 4.3 dealing with
and decreasing when the size of the data set increases, thaeural network modeling, we give indications on how to

number of trainings is chosen accordingly. judge if N is large enough for the approximate CI to be
accurate.

3.3. Quality of the approximate confidence intervals In order to evaluate the accuracy of the LTE variance
estimate (27) when dealing with simulated processes, we

3.3.1. Theoretical analysis introduce an estimate of the unknown true varianc&>qf

The quality of the approximate CI depends essentially on @,s) that is not biased by curvature effectse reference
the curvature of the solution surface(f(x, 8)), which variance estimatevar(f(x;0.s))s. This estimate is
depends on the regularity éfand on the value oN. In computed on a large numbgft of other sets oN outputs

practice,f is often regular enough for a first-order approx- corresponding to the inputs of the training set, and whose
imation to be satisfactory, provided thdtis large enough.  values are obtained with different realizations (simulated
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Fig. 5. Cl for process #3, a simulated “neural” MISO process (the assumed
model, a two hidden neurons network wijlr= 9 parameters, is true): (a)
theN = 100 inputs of the data set (circles) and regression; (b) LTE estimate
of the variance of(x,®s); and (c) difference between the reference and the
LTE estimates of the variance f{k,®s).

values) of the nois&V. The ith LS estimatef (x, 6(}) of
E(Yp|x) is computed with data set(i=1 to M), and the
reference estimate of the variance at inpig computed as:

S 1 M .
var(fx Ous)er = 11 > (Fx. 8(5) = (F00))?,
i=1

M
where(f(x)) = % > fx, 6% (33)
=1
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simulated; (2) the LTE variance estimate (27), which is the
estimate that can be computed in real-life; and (3) the refer-
ence variance estimate (33), which tends to the true variance
whenM tends to infinity because it is not biased by curva-
ture effects, and which can be computed only when the
process is simulated.

3.4. lllustrative examples

As we are concerned with neural models, and since, in
this section, the assumed model is true, the following
examples bring into play “neural” processes, that is
to say processes whose regression function is the
output of a neural network; the more realistic case of
arbitrary processes for whom a family of nonlinear
functions (a neural network with a given architecture)
containing the regression is unknown is tackled in the next
section.

3.4.1. Example of a simulated “neural” SISO process
(process #2)

We consider a SISO process simulated by a neural
network with one hidden layer of two hidden neurons
with hyperbolic tangent activation function and a linear
output neuron:

Yi = Oy, + O, tanh(b,, + 6,X

+0,, tanh(6,, + 0, X) + W k=1toN (34

We take@, = [1; 2, 1; 2, —1; —1; 3]", 0> =102, N =

50. The inputs &} of the data set are uniformly distributed

in [—3; 3], as shown in Fig. 4a. The family of functions
{6, + 6, tanh(63 + 6,X) + 65 tanh(6 + 6;x), 6 € R’} is
considered, that is the assumed model is true, and we choose
a confidence level of 99%,3(1%) = 2.58). The minimiza-

tion of the cost function with the Levenberg algorithm leads
to s = 1.02x 102 Fig. 4b displays the LTE estimate of
the variance of(x, @.s) (27), and the reference estimate
(33) computed oveM = 10000 sets. Fig. 4a shows the
regression, the data set used for the LS estimation, and the
corresponding model output and 99% CI (32). The model
being true and the sizd = 50 of the data set being rela-
tively large with respect to the number of parameters and to
the noise variance, we observe that: )~ o?; (i) the
model output is close to the regression, leading to good
approximations of and of & by zandz Thus, (i) and (ii)

lead to an accurate LTE estimate of the variance, and hence
of the CI.

In the nonlinear case, we thus use three notions related to the

(true) variance of(x,0.s): (1) the LTE variance approxi-
mation (23), which is a good approximation of the true
variance if the curvature is small, as we show in Section

3.4.2. Example of a simulated “neural” MISO process
(process #3)
We consider a MISO process simulated by a neural

3.4.3, and which can be computed only when the process isnetwork with two inputs, one hidden layer of two “tanh”
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Fig. 6. Accuracy of the LTE approximation of the variance for process #2: (a) reference estimate of the varfignék €f(thin line), LTE approximation
obtained with the true values, anda? (thick line); and (b) difference between the reference estimate of the variaf(ze®fs) and the LTE approximation

obtained with@, and o>

hidden neurons and a linear output neuron:
k _ k k
Yp = Oy, + 6, tanh(6,, + 6p,X1 + Oy %)

+ 6, tanh(g,, + 0, X5 + 6, %5) + W k= 1toN (35)
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We take 6,=1[1 1,0, 1; -1, =2, 0; 1; l]T, o’ =
1071, N = 100 The inputs §('§} and {x‘ﬁ} of the data set
are uniformly distributed in+3; 3]. As for process #2, the
assumed model is true, i.e. the neural network associated to
Eq. (35) is used; the minimization of the cost function with
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Fig. 7. Accuracy of the LTE approximation of the variance for process #3: (a) reference estimate of the varignék )f and (b) difference between the
reference estimate of the variancef@f®_s) and the LTE approximation obtained with and a?.
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the Levenberg algorithm leads $6= 9.73x 10 2. Fig. 5a computation of the approximate Cl (32). We propose to
shows the inputs of the data set and the regression; Fig. 5bdiscard too large models by a systematic detection of ill-
displays the LTE estimate of the variance@ef @ <) (27); conditioning, and to perform the selection among the
Fig. 5c displays the difference between the reference approved, i.e. well-conditioned models using an approxi-
variance estimate (33) computed over= 10000 sets, mate value of their LOO score whose computation does
and the LTE variance estimate (27). &ss slightly smaller not require further training. Both the ill-conditioning detec-
than o, the variance is globally slightly underestimated. tion and the estimation of the LOO score of a neural candi-
However except in the domain around the corner (3, 3) date are based on the LTE of its output.

where the density of the inputs is lower, and where the slope

of the output surface is steep, the LTE variance estimate is4.1. lll-conditioning detection for model approval

satisfactory. A reliable estimate of the Cl may thus be obtained. ) i
A too large neural model, trained up to convergence with

i L a simple LS cost-function, will generally overfit. Overfitting

3.4.3. Accuracy of the LTE variance approximation is often avoided by using early stopping of the training
(processes #2 and #3) algorithm or by adding regularization terms in the cost func-

Let us now show on the example of processes #2 and #3;jon e g. “weight decay” (Bishop, 1995). Unfortunately, as
that the curvature of the solution surface is small enough for only the estimator whose value corresponds to an absolute
the LTE approximation of the variance (23) to be satisfac- minimum of the quadratic cost function (18) without weight
tory. Fo_r both processes, we have computed approxmatlondecay terms is unbiased, both early stopping and weight
(23), using the values af and of£ (at 8y) and the value of  yecay introduce a bias in the estimation of the regression:

2 . . . . .
o” used for the noise simulation. As shown in Fig. 6aand b e corresponding estimates thus lead to questionable Cls
for process #2, the LTE approximation of the variance (23) oy the regression.

is very close to the reference variance estimate. As a matter T4 getect and discard too large networks, we propose

of fact, the difference between them (Fig. 6b) is only due t0 a¢ter the training of each candidate up to a (hopefully) abso-
the curvature, which is small &= 50 is large with respect |16 minimum of the cost function (18), to check the condi-
to the complexity of the regression. Expression (23) also (igning of their matrixz (see Rivals & Personnaz, 1998).
leads to satisfactory results in the case of process #3 aStne tact that be ill-conditioned is the symptom that some
shown in Fig. 7a and N = 100 two inputs). This tends  parameters are useless, since the elemersapesent the

to show that a first-order approximation of the variance is sensibility of the model output with respect to the para-
often sufficient, and that it is not worth to bother with a yaters. A typical situation is the saturation of a “tanh”

higher-order approximation. Seber and Wild (1989) intro- phiggen neuron, a situation which generates in the matrix
duces a quadratic approximation of the LS estimator using 5 column of+1 or —1 that corresponds to the parameter
the curvature of the solution surface. This approximation petween the output of the saturated hidden neuron and the
uses arrays of projected second derivatives, the intrinsicinear output neuron, and columns of zeros that correspond
and parameter-effects curvatures arrays; but their i, the parameters between the network inputs and the satu-
presentation is beyond the scope of this paper. rated hidden neurofin practice, we propose to perform a
singular value factorization af, and to compute its condi-
tion number, that is the ratio of its largest to its smallest
singular value, see, e.g. Golub & Van Loan, 1983. The
matrix z can be considered as very ill-conditioned when
its condition number reaches the inverse of the computer
precision, which is of the order of T6°.

Further, in order to be able to compute the approximate
Cl (32) which involve £'2)~ %, the cross-product Jacobian
matrix z'z must also be well conditioned. As the condition
number ofz'zis the square of the condition numberzpthe
networks whose matrixz has a condition number much

4. Confidence intervals for neural networks

In the previous sections, the model used for the construc-
tion of Cls is true. For real-world black-box modeling
problems however, a family of functions that contains the
regression is not known a priori. The first task is thus to
select the less complex family of functions which contains
a function approximating the regression to a certain degree
of accuracy in the input domain delimited by the data set. In
practice, several families of increasing complexity (for
example neural networks with one layer of an increasing larger than 1B cannot b? approveq. T
numbern, of hidden units, and a linear output neuron) are There are other studies of the ill-conditioning of neural

considered, and the data set is used both to estimate theipetworks, but they deal with their training rather than with

parameters, and to perform the selection between the candi-their approval, like in the work by Zhou and Si (1998) where

dates. In order to retain the less complex family containingaan algorithm avoiding the Jacobian rank deficiency is
good approximation of the regression, it is of interest to "5 such a situation miaht al dt \ative mini 10 check

. . uch a situation mignt also correspond to a relative minimum; to chec
per.form the selection On_ly between neu_ral Candldate_s the conditioning o helps thus also to discard neural networks trapped in
Wh'_Ch are no_t Unne_cessa”ly large, and which are (that is rejative minima, and leads to retrain the neural candidate starting from
their matrix z is) sufficiently well-conditioned to allow the different initial weights.
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Fig. 8. Schematic evolution of thHdSTE(crosses) anSPE(circles) as a function of the number of hidden neurons of the neural network candidates, the
network with the smalleSISPEbeing selected: (a) large data set: the rd®PEMSTEof the selected network (six hidden neurons) is roughly equal to 1,
hint that the data set si2¢is large; and (b) small data set: the rad®PEMSTEof the selected network (three hidden neurons) is roughly equal to 2, hint that
the data set sizBl is small.

presented, or by Saarinen, Bramley and Cybenko (1993)without performing theséN time-consuming trainings of
where the Hessian rank deficiency is studied during the each candidate network, as proposed in Monari (1999)
training. In our view, rank deficiency is not very relevant and Monari and Dreyfus (submitted)).
during the trainingbecause with a Levenberg algorithm, the In the case of a linear model, it is well known (Efron &
matrix to be “inverted” is made well conditioned by the Tibshirani, 1993) that th&th LOO errore can be directly
addition of a scalar matrix lg, A > 0, to the cross-product  derived from the corresponding residué
Jacobian. K
k="  k=1toN (36)
4.2. Approximate leave-one-out scores for model selection 1= [Pk
i i where, we recall,p, denotes the orthogonal projection

The selection among the networks which have been .. on the range of. Expression (36) holds irrespective
approved can be performgd with statistical tests (Rivals & of whether or not the assumed model is true.
Personnaz, 1998; Urbani, RousseI-Ragot_, P_ersonnaz_ & In the case of a nonlinear model, we show (see Appendix
Dreyfus, 1994). Another approach, cross validation, consists B) that a useful approximation of theh LOO error can be

in partitioning the data set in training and test sets, and in obtained using the LTE of the model outputéat;:
selecting the smallest network leading to the smallest mean

square error on the test sét®ne of the drawbacks of cross r _

validation is to require a successful training of the candidate €T 1= [P lkk k=1tN @37
models on many test sets, thaNisuccessful trainings in the
case of LOO cross validation. Let us denotedyhe error
obtained on the left out exampkavith the model trained on
theN — 1 remaining exampleih test set). In this section,
we derive an approximate expression &f expression
which allows an economic estimation of the LOO score

where p, denotes the orthogonal projection matrix on the
range ofz. The approximation (37) is thus similar to Eq.
(36).1° Like in the linear case, expression (37) holds
independently on the assumed model being true or not.
Hence the LOO score:

- 1N
® Note that statistical tests may advantageously be used complementarilyLOO score = N Z (ek)2 (38
to cross validation in order to take a decision (Rivals and Personnaz, 1999); k=1

these tests can also be established by applying LS theory to the LTE of

nonlinear models (Bates and Watts, 1988), but this exceeds the scope of this ° An expression similar to (37) is proposed in Hansen and Larsen (1993),
paper. but unfortunately, it is not valid even in the linear case.
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Fig. 9. Cl for process #4, a simulated nonlinear SISO process, in the case of a data selNef 226 (the selected model is a four hidden neurons network
with g = 13 parameters): (a) regression (thin line), data set (small points), model output and 99% approximate ClI (thick lines); and (b) referencauthin line)
LTE (thick line) estimates of the variance ffk,0,s).

This LOO score can be used as an estimate of the mean f(x,0.s) thus underfits. The approximate Cls are thus
square performance error, and we thus denote it as MSPE, questionable, and additional data should be gathered.
as opposed t62/N)J(0_s), the mean square training error

(MSTE). The interested reader will find in the work of A good indicator of whether the data set siXeis large
Monari (1999) and Monari and Dreyfus (submitted) a enough or not is the ratidSPE/MSTEof the selected
systematic model selection procedure based on both thecandidate: if its value is close to 1, théis probably
approximate LOO score and the distribution of the values large enough, whereas a large value is the symptom of a
of the {[p]w}. Nevertheless, another performance measure too small data set size, as shown in Fig. 8 (and as illustrated
could be chosen as well (a 10-fold cross validation score, anumerically in the following examples).

mean square error on an independent set, etc.).
4.4, Example of a simulated nonlinear SISO process

4.3. Accuracy of the approximate confidence intervals (process #4)

The quality of the selected modgk, 6,s), and thus of the This first example is based on a simulated process. Like in
associated approximate Cl, depends essentially on the sizehe previous sections, a reference estimate of the variance of
N of the available data set with respect to the complexity of the output of a neural network is made, usidg= 1000
the unknown regression function and to the noise variance other sets; to ensure that an absolute minimum is reached
o’ on each of theM sets, 5—30 trainings (depending on the

network size) with the Levenberg algorithm for different
1.N is large: it is likely that the selected family jnjtializations of the weights are performed, and the weights

{f(x,0), 0 € R% contains the regressio&(Y,|x), i.e. giving the smallest value of the cost function (18) are kept.

that the LS estimator is asymptotically unbiased, that \we consider the SISO process simulated with:

the modelf(x,8.s) is a good approximation oE(Y,|x)

in the domain delimited by the dataset, and that the Y = sinc(2(X‘ + 5)) + wk=1toN (39

curvature is small. In this case, reliable Cls can be

computed with Eqg. (32).

2. N is small: it is likely that the selected family

{f(x,0), 8 € R% is too small'* to containE(Y,|x), i.e.

that the LS estimator is biased, and that the model

where sinc denotes the cardinal sine function; we take-
1072,

First, a data set dff = 200 input—output pairs is computed,
with input values uniformly distributed in—{5; 5]. As a
family of nonlinear functions (a neural network with a
1t will generally not be too large since the approval procedure proposed g|ve.n grchltecture) Contam,mg th_e regression Is not known
in Section 4.1 prevents from selecting a neural network with useless & Priori, neural networks with a linear output neuron and a
parameters. layer ofny, “tanh” hidden neurons are trained. The numerical
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Fig. 10. Cl for process #4, a simulated nonlinear SISO process, in the case of a data sé\ ef 8iz¢the selected model is a two hidden neurons network with
g =7 parameters): (a) regression (thin line), data set (circles), model output and 99% approximate ClI (thick lines); and (b) reference (thin |[Béhecid LT
line) estimates of the variance k,® ).

results are summarized in Table 1. We list the number of computed, the numerical results being summarized in
parameters), the MSTE (i.e. the smallest MSTE obtained Table 2. The data set being much smaller, the candidates
with the network for its different random weight initializa- cannot be approved as soon ag>4: for n, =25,
tions), the condition number af and, if the latter is nottoo  condz) = 10", The optimal number of neurons
large, the MSPE (corresponding approximate LOO score nﬁpt(30) =2 is selected on the basis of the MSPE. The
computed with Egs. (37) and (38)) and the ratio MSPE/ ratio MSPE/MSTE of the selected network equals 2.1,
MSTE. The candidates with more than six hidden neurons symptom thatN is relatively small, and that the selected
cannot be approved, because aang- 10°: for n, =7, family of networks is likely not to contain the regression
condz) = 10''. The optimal number of neurons (case 2 of Section 4.3). The results obtained for the
nﬁpt(ZOO) =4 is selected on the basis of the MSPE. selected neural network are shown in Fig. 10. The family
The fact that the corresponding ratio MSPE/MSTE is of functions implemented by a network with two hidden
close to 1 is the symptom that is large enough, so units is obviously too small to contain a good approxima-
that the selected family of networks contains a good tion of the regression, and though the estimate of the
approximation of the regression, and that the curvature output variance is good (it is close to the reference
is small (case 1 of Section 4.3). The results obtained for variance estimate), since the output of the neural network
the selected neural network are shown in Fig. 9. The differs from the regression, the Cl is less accurate than in
model output is close to the regression, the LTE the case wherdl = 200 Note that in the input domain [0,
variance estimate (27) is close to the reference variance5] where the model underfits, the variance remains
estimate (33), and the CI is thus accurate. constant and low. This is due to the fact that, in this
Second, a data set dfl =30 input—output pairs is domain, the model output is insensitive to most para-
meters of the network (this is usually the case when,

Table 1
Results obtained on the modeling of the simulated SISO process #4 using
neural networks, in the casé= 200 Table 2
Results obtained on the modeling of the simulated SISO process #4 using
My q MSTE Condg) MSPE MSPEMSTE neural networks, in the casé= 30
1 4 14x10% 10 14x10% 1.0 mooq MSTE Condg)  MSPE MSPEMSTE
2 7 12x102 10° 13x102 1.1
3 10 97x10°%  10° 11x102 11 1 4 24x102 10 27x10% 1.1
4 13 85x10°% 10? 98x10% 11 2 7 1.1x 1072 10° 23x102 21
5 16 84x10°% 10° 99x10°% 1.2 3 10 81x10°% 10° 24x10% 3.0
6 19 82x10°% 10 10x102 1.2 4 13 71x10°% 10 43x10 6.1x10°
7 22  7.9x<10°% 10" - - 5 16 5.0x 10°° 10%® - -
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Fig. 11. Industrial modeling problem (the selected model is a two hidden neurons netwodea@ltparameters): model output, and thie= 69 examples of
the data set (circles).

_05 L 4
10 20 30 40 50 60
C)
0-25 T T T T T T
02t i
X i
0-1;” S %%
X)§< X
ot R X x
TT X7 R o X 20K X% ><>$$(X>®§<
005 X XXX X XX X sl K
o 10 20 30 40 50 60 70

Fig. 12. Industrial modeling problem (a) tié= 69 outputs of the data set presented in increasing order of their values; (b) the corresponding residuals
(circles) and approximate LOO errors (crosses); and (c) half width of the 95% approximate ONat tB@ examples of the data set, and LS estinsatEthe
noise standard-deviation(dotted line).
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Table 3

Results obtained on the modeling of the industrial process using neural
networks

N q MSTE Condg) MSPE MSPEMSTE

1 5 52x 102 10* 66x102% 1.3

2 9 16x 1072 10° 21x102% 1.3

3 13 15x107? 10* 17x10Y  1.1x10

4 17  1.2x10-2 107 - -

dates with more than three hidden neurons cannot be
approved: fom,, = 4, condz) = 10" The optimal number

of neuronsn’®(69) = 2 is selected on the basis of the
MSPE. The fact that the corresponding ratio MSPE/MSTE
equals 1.3 indicates thatl is large enough, so that the
selected family of networks contains probably a good

approximation of the regression, and that the curvature is
/\ small (case 1 of Section 4.3). The function implemented by
: ‘ : ‘ S the selected network is shown in Fig. 11.

80 100 120 140 160 X1

TheN = 69 output values of the training set are presented
Fig. 13. Industrial modeling problem: isocontours of the LTE estimate of in the increasing order in Fig. 12a, and the corresponding
the standard deviation 6x, ©,s), and theN = 69 inputs of the data set ~ residuals and approximate LOO errors in Fig. 12b: both
(circles). appear quite uncorrelated and homoscedastic. A Cl with a
level of significance of 95% is then computed with Eq. (32);
the half width of the 95% CI on thd = 69 examples of the
like here, the output of a network does not V&ythe data set is shown in Fig. 12c. In order to check the confi-
elements of thezs in this domain are thus constant and dence, which can be attached to the model, the variance of
small, hence a small and constant variance at the corre-its output must be examined in the whole input domain of

spondingxs. interest. Fig. 13 shows the isocontours of the LTE estimate
_ _ of the standard deviation of the model outyt' (z'2)~1z
4.5. Industrial modeling problem in the input domain defined by the training set. The compu-

tation of the LTE variance estimate thus allows not only to
A : construct a Cl at any input of interest, but also to diagnose
estimation, model approval, model selection, Cl CONStrUC- 54 5t the top right corner of the input domain, the model
tion) to an industrial example first tackled in (Rivals &  an4ard deviation is larger than that of the noise itself (the
Personnaz, 1998), that is the modeling of a mechanical hast isocontour value equals that of the estimate of the

property of a complex material from three structural qiqe standard deviatian= 1.39x 103, Little confidence
descriptors. We have been provided with a data sét f - . 5 pe attached to the model output in this input

69 examples; the inputs and outputs are normalized for thedomain, where more data should be gathered. On the
LS estimations. Thanks to repetitions in the data, and c,nary there is a large region on the left of the diagram
assuming homoscedasticity, the “mean square pure error'y pore there are very few training examples, but where the
(Draper & Smith, 1998) gvesa good estimate of the noise | T¢ egtimate of the standard deviation is surprisingly rather
variance: g% = 3.38x 10 " Using this reliable estimate, — g.)|- jike for the modeling of process #4 in Section 4.4, this
statistical tests establish the significance of two inputs. An is due to the fact that the model output is less sensitive to

ngfife model _Vfitr} trr]]ese two inpﬁts givcta]s the est.imat;a most parameters of the network in this region (the model
= 2.38x 10~ of the variance, hence the necessity o output varies very little, see Fig. 11).

nonlinear modeling.

Neural networks with a linear output neuron and a layer
of n, “tanh” hidden neurons are trained. The numerical
results are summarized in Table 3. It shows that the candi-

We apply here the presented methodology (LS parameter

5. Comparisons

In this section, we discuss the advantages of the LS LTE
e outout of | network with | ¢ tanh hidd " approach to the construction of confidence intervals for
e output of a neural network with one layer of tanh hidden units . -
remains constant in a given domain of its inputs when the “tanh” activation neural networks with respect to other analytlc approaches
functions of all hidden units are saturated in this domain: the output of the a_nd to the bootstrap methods, and compare them on
network is thus insensitive to all the parameters of the hidden units. simulated examples.
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Fig. 14. Comparison of different estimates of the variance of a nonlinear model output for process #5, a simulated “neural” SISO process (th@dsswmed m
single nonlinear neuron wit = 2 parameters, is true): (a) regression with a “gentle” slope (thin line)\tse80 examples of the data set (crosses), model
output (thick line); and (b) LTE approximation and estimates of the varianée,00s).

5.1. Comparison to other analytic approaches approaches are conceptually very different: the Bayesian
] o approach treats the unknown parameters as random vari-
5.1.1. Maximum likelihood approach ables, whereas they are considered as certain in the frequen-

In the case of gaussian homos.cedastic Qata, likelihoodjst approach. Nevertheless, as outlined by Bishop (1995),
theory leads to the same approximate variance (23), butpmacKay (1992a,b), the Bayesian approach leads to a poster-
two different estimators of it are commonly encountered jor gistribution of the parameters with a covariance matrix

(see Appendix A.2): whose expression is very similar to that of the covariance
— =S T, o1 matrix of the least-squares estimator of the parameters, and
var (f(x, Ous)Lre = 0°2(2'2) 7z thus to Cls which are similar to those presented in this paper.

We thus make a brief comparison between the Clis these two

R approaches lead to.

var (f(x, @_s))pessian= 2 Z' [h(O.5)] 'z (40 _ The most important difference is that the estlm_at_or_whlch
is considered here is the one whose estimate minimizes the

which necessitates the computation of the Hessian. Efficientcost function (18), whereas in the Bayesian approach, a

methods for computing the Hessian are presented bycost-function with an additional weight-decay regulariza-

i.e. the same estimate as Eq. (27), and also:

Buntine and Weigend (1994). tion term is minimized; the presence of this weight-decay
term stems from the assumption of a gaussian prior for the
5.1.2. Bayesian approach parameters.

The Bayesian approach is an alternative approach to the Nevertheless, the least squares cost function (18) can be
sampling theory (or the frequentist approach) for modeling seen as the limit where the regularization term is zero, which
problems, and also leads to the design of Cls. These twocorresponds to an uninformative prior for the parameters. In
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Fig. 15. Comparison of different estimates of the variance of a nonlinear model output for process #6, a simulated “neural” SISO process (th@dssamed m
single nonlinear neuron with= 2 parameters, is true): (a) regression with a “steep” slope (thin line)\ a0 examples of the data set (crosses), model
output (thick line); and (b) LTE approximation and estimates of the variant,00,s).

this case (that is Eq. (18) is minimized as in this paper), most probable value of the parameter, that is hre A
there is another small difference in the Bayesian approach ad. TE of the estimator output leads then to the following
outlined by Bishop (1995) and MacKay (1992a,b). Under estimate of its variance at input

hypotheses which we cannot detail here, the Bayesian .

approach leads to a posterior parameter distribution with Var(f(/xs\@LS))Hessian: a27'h(8.5)] 1z

the approximate covariance matrix’[h(6.s)] 2, h(f.s)

being the Hessian of the cost function evaluated at thei.e. it also leads to estimate (40).
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0.01
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2 3

Fig. 16. Comparison of the LS LTE and bootstrap pairs approach estimates of the variance for process #2. reference (thin line), LTE (thick lotslregnd bo
pairs (dotted line) estimates of the variancd(gf @ ).
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5.1.3. Sandwich estimator 5.2. Comparison to bootstrap approaches

The sandwich estimate of the variance of a nonlinear
model output can be derived in various frameworks (a possi- The bootstrap works by creating many pseudo replicates
ble derivation in the frequentist approach is given in Appen- of the data set, the bootstrap sets, and reestimating the LS

dix A.3): solution (retraining the neural network) on each bootstrap
. . set; the variance of the neural model output, and the asso-
var (f(X, 0.s))sanawich= 022 [h(0.5)] 12 Zh(6.5)1 'z (41) ciated ClI, are then computed over the trained networks,

typically a hundred (Efron & Tibshirani, 1993). In the
The sandwich estimator is known to be robust to model “bootstrap pairs approach“ for examp|e, a bootstrap set is
incorrectness, i.e. the considered family of functions is too created by sampling with replacement from the data set
small (see, e.g. Efron & Tibshirani, 1993; Ripley, 1995).  (Efron & Tibshirani, 1993). The first advantage of the LS

LTE approach is to require onlgne successful training of
5.1.4. Numerical comparison (processes #5 and #6) the network on the data set to compute the LTE estimate of

Here, we perform a numerical comparison of the three the variance of its output, whereas the bootstrap methods

variance estimates considered above on a very Simmerequireahundred successful trainings of the network on the
different bootstrap sets.

example. We consider a SISO process simulated by a single X . )
“tanh” neuron: Studies on bootstrap where only one training with a
random initialization of the weights was performed for
y€ =tanh(6, + 6, ) +w* k=1toN (42 each bootstrap set show a pathological overestimation of
p P1 P2 . . . A . .
the variance. This can be seen in Tibshirani (1996), exam-
with o2 = 0.04, N = 30. For this comparison, the noise ples 2 and 3; but the overestimation of the bootstrap is not
varianceo? is estimated witts? in the three (LTE, Hessian,  detected in this work because the reference estimate is also

and sandwich) output variance estimates. overestimated for the same reasons (one single training per
We first simulate a process wittd, =0, 6, =1 set). As pointed out by Refenes, Zapranis and Utans (1997),

(process #5). The corresponding results are shown in Fig.a way to reduce this overestimation is to start each training

14. The variance reference estimate is computedvion on a bootstrap set with the weights giving the smallest value

10000 data sets. The LTE approximation (23) of the ofthe cost function (18) (that is on the original data set); but
variance is almost perfect. The LTE (27), Hessian (40), even so, the bootstrap method becomes untractable for large
and sandwich (41) estimates are comparable: the parametenetworks, and/or for multi input processes.
estimates being accuraté s, = 3.63 10 2, 6.s, = 0.996), The claim that bootstrap methods are especially efficient for
the fact that they are overestimated is almost only due to the problems with small data sets (see, e.g. Heskes, 1997) may be
noise variance estimat® = 1.32x 10 2 Nevertheless, the  subject to criticism. As an illustration, the variance was esti-
shape of the LTE estimate is closer to the reference estimatemated for process #2 using the bootstrap pairs approach on
than that of the two others. 300 bootstrap sets, the network weights being initialized twice
We then simulate a process wittf, =0, 6, =5 for each training, once with the true ones, and once with those
(process #6). The corresponding results are shown in Fig.obtained by training the network on the whole data set. As
15. The function being steeper, the curvature is larger, andshown in Fig. 16, though the size of the data set is not very
the LTE approximation (23) of the variance is a little less small (N = 50), the bootstrap variance estimate is far away
accurate. The three estimates are still very similar but, here,from the reference estimate. Increasing the number of boot-
their overestimation is due not only to the noise variance strap sets up to 1000 did not improve the variance estimate.
estimates” = 1.25x 10 2, but also to the bias of the para- In fact, the bootstrap is especially suited to the estimation
meter estimateé, s, = 3.79 102, 6 s, = 6.58). of the variance of estimators defined by a formula, like for
The computational cost of the LTE estimate being lower example an estimator of a correlation coefficient (Efron &
(is does not necessitate the computation of the HessianTibshirani, 1993): for each bootstrap set, an estimate is
matrix), there is no reason to prefer one of the two other computed using the formula, and the estimate of the
estimates. As a matter of fact, since the Hessian depends omwvariance is easily obtained. However the bootstrap is defi-
the data set, it is the realization of a random matrix. Thus, in nitely not the best method if each estimation associated to a
the maximum likelihood as well as in the Bayesian bootstrap setinvolves an iterative algorithm like the training
approach, it is often recommended to take the expectationof a neural network, which is the case for the construction of
of the Hessian, and to evaluate it at the availahlg i.e. to a Cl with a neural model. However, if the data set is large
replace it by the cross-product Jacobizn (Seber & Wild, enough, and if the training time is considered unimportant,
1989): estimates (40) and (41) then reduce to estimate (27).the bootstrap pairs approach is a solution in the case of
As mentioned above, the sandwich variance estimator isheteroscedasticity (that iK(W) is not scalar anymore),
known to be robust to model incorrectness, a property whereas the LS LTE approach, as well as the “bootstrap
which is not tested with this simple setting, but this is residuals” approach (Efron & Tibshirani, 1993), are no
beyond the scope of this paper. longer valid.
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6. Conclusion This leads to

- T
We have given a thorough analysis of the LS LTE (0=~ 7(p = T(x 0p) — &6 — 6y))

approach to the construction of Cls for a nonlinear regres- _ an

sion using neural network models, and put emphasis on its X(¥p = 1%, Op) = &6~ 6p)

enlightening geometric interpretation. We have stressed the — Live — F(x 0.) + £0.)T(v. — F(x. 0.) + &6
underlying assumptions, in particular the fact that the 20 ~ 10X 6+ £0p) (o — 10X Bp) + £6p)
approval and selection procedures must have led to a parsi- -0 §T(yp —f(x ) + £0,) + %0"' £T¢o

monious, well-conditioned model containing a good

approximation of the regression. Our whole methodology An approximate expression of the gradient of the cost-
(LS parameter estimation, model approval, model selection, function follows

Cl construction) has been illustrated on representative T N

examples, bringing into play simulated processes and anz g =~ —& (Yo — (X 0p) + £6p) + £°E6 (A4)
industrial one. _ _

We have also shown that, as opposed to the computation-Hence an approximate expression of the least-squares
ally intensive bootstrap methods, the LS LTE approach to estimate of the parameters
the estimation of Cls is both accurate and economical in . T 1T,
terms of computer power, and that it leads to Cls which Op + (679 76 0~ T(x. 6p)) (A5)
are comparable to those obtained by other analytic And hence the corresponding approximation of the least-
approaches under similar assumptions, at a lower computa-squares estimator (i.e. the random vediss) of the para-
tional cost. meters (expression (21) in the main text)

A rigorous assessment of the accuracy of the results T 1T T 1T
obtained with the LS LTE approach, as well as with any Os =0+ (69 & Yp—fx6) =6+ & ¢W
statistical approach dealing with nonlinear models and (A6)
assuming the Ioca_l planarity of the solution surface,_r_emains Using the linear Taylor expansion (Al), we obtain an
an open problem: it could be enlightened by a specific study gpproximation of the variance of the LS estimator of the
of the curvature of the solution surface of neural networks. regression for any input (expression (23) in the main text):

var(f(x, Os) = o?£"(£7¢) ¢ (A7)
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Appendix A. Estimates of a nonlinear model output

. A.2. LTE variance estimates in maximum likelihood theory
variance

] ) ] For comparison, we sum up the results obtained with
In order to make this paper self-contained, we provide ayimum likelihood theory (see, e.g. Efron & Tibshirani,
derivations of the different variance estimates. 1993; Tibshirani, 1996). We make the same assumptions as
for sampling theory, i.e. that the nonlinear assumed model is
true and thatk(W) = o2y (homoscedasticity), and we
The well-known approximation (Seber & Wild, 1989) we ~consider a gaussian distributed noise. In this case, the log
use in this paper is based on a single expansion, the LTE oflikelihood function is:

A.1l. LTE variance estimate in sampling theory

the nonlinear model output for an inpxtat the true para- 1 T
meter valuedy; LO) =~ 550 — T ) (, ~fx. ) +cte (A9
f(x,0) = f(x,0;) + £'(0— 6)) (A1) The parameters that maximize Eq. (A9) are those that mini-

mize EqQ. (A3), i.e.fy. = 6.

It can be shown (Seber & Wild, 1989) that the covariance
f(x, 0) =~ f(x, 6y) + &6 — 0)) (A2) matrix of @, is given asymptotically by the inverse of the
Fisher information matrix evaluated @. The Fisher infor-
mation matrix being the mathematical expectation of the
J(6) = %(yp — f(x, 6’))T(yp —f(x, 0) (A3) random matrixM(@) of the second derivatives of the log

This expansion leads, for the data set, to

We now use Eg. (A2) in the expression of the cost-function
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likelihood function, we have

oL
(M(0)];; = — 26,00
1 & af (XK, 0) af (XX, ) ’ P*F(x~, 0)
‘azk;( a6, OO o) e 96,06,

(A10)

The assumed model being true, |E(Yk—f(x 0,) =
E(Wk) = 0, the Fisher information matrix evaluated @
is given by:

9°L
[EMO)])j = ————
P 96,06, |
:ii[af(x I EECSY) ]
o & o=0, 99 oo,
(A11)
1.7
EM(6y)) = ?f &

Thus, the covariance matrix @,
mately given by:

= @ s is approxi-

K(@Ow) = [EM@)] ' =o' 9 " (A12)
Using the linear Taylor expansion (A1), the maximum like-
lihood approximation of the variance of the output in the
gaussian case is obtained

var(f(x, Ous)) = o’£'(£79 & (A13)
Hence, the maximum likelihood approximate variance
(A13) is identical to the sampling theory approximate
variance (A7).

Remark. The Hessian matrix h is the value of the random
matrix H with elements:

9%
(H(6); ~ 96,06,
N[ af (XX, 0) of (X¥, 0) ‘ o 0% (XK, 0)
Z( BOJ- +(Yp—f(X,0))Taej
(Al4)
Thus
1 1
EM(6y)) = ?E(H(ﬂp)) = pf & (A15)
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We can thus estimate the variance with

van(f(x, O, s).re = 02772 'z (A16)

In likelihood theory, the variance of the noise is estimated
with
R'R
N
but we will skip over this minor difference; Eq. (A16) is thus
identical to Eq. (A8).
It is also proposed to estimate the Fisher information

matrix E(M(0,)) with the “observed information matrix”
m(0_s); this leads to estimate the variance with

_N-9._
_Tsz~sz,

Var f(x, ©_s)hessan= 722 [(Bs)] 'z (A17)

In contrary to estimate (A16), estimate (A17) necessitates
the computation of the Hessian.

A.3. Sandwich variance estimate

Let us propose a derivation of this estimate in the
sampling theory. A second expansion is needed, the LTE
of the gradient at the true parameter vatle

EN EN 92J
o ~ . 05— 0
90l0-0.c 00lo—g, 06000 Hp( Ls = 0)
aJ
=21  +h,)0.s— 0 A18
30 10-0, (0p)(0s ) (A18)

whereh(0,) is the value of the random Hessian matrix (see
Section A.2) evaluated #,. Hence an approximate expres-
sion of the LS estimate of the parameters
1 0J

6 s = 6,—[h(6 —
Ls = 6, — [h(6p)] 20 o-0,

(A19)

In Eq. (A19), we can replace the gradient by its expression

aJ

300 (A20)

. —ET (Y — fx ) = —¢TW
Hence the corresponding approximation of the least-squares
estimator (random vectd®, s) of the parameters
Ous = 6, + [H(B)] "E'W (A21)
Using the LTE of the model output (A1), we obtain;

f(x, OLs) = f(x, 0;) + E'[H(G)] "E'W

Neglecting the random charactertdf(H being replaced by
h), the output variance can be approximated by

var(f(x, OLs)) = o £ [h(0,)] 1ETEN(O,)] &

This leads to propose the sandwich estimate

(A22)

(A23)

Var( f(x. @s))sanawioh= S Z' [N(B,5)] 2" z[N(B5)] "

(A24)
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This estimate also necessitates the computation of thewhich is similar to the expression of the linear LOO error

Hessian of the cost-function.

Appendix B. Derivation of an approximate LOO error

The following derivation is inspired from the work of
Antoniadis et al. (1992) and is valid irrespective of whether
or not the assumed model is true. We denotéffythe LS
estimate on théth LOO set §< y’p}, Lo Nk We have the
kth residualr® and thekth LOO errore®:

i =y5 — (X, 09)
e =y — (" 0

Let us denote byl the (N — 1)-vector obtained by deletion
of the kth component of the measured output vegtgrby

® the(N — 1, ) matrix obtained by deletion of thdh row
of z, by x® the(N — 1, g) matrix obtained by deletion of the
kth row of x. The LOO estimatef("2 minimizes the cost-
function

(BD

390 = 30" — f 9. 0)Typ” —F(x¥. 0)) (B2)
We first approximaté (x¥, ) by its LTE at6,s:
f(x%, 0 =~ f(x¥, 0.5) + Z¥(0 — 6.9) (B3)
Hence the approximation @}
0~ 05 + (29'29) 200 — 19 0y B4
In the previous expression, we have
29 (g0 — £(x¥, 0.)) = Z'(y, — F(x, B5)) — 27

(BS)

=7 — &= =2k

because the columns afare orthogonal to the residual
vectorr. Using the matrix inversion Iemma we can express
@929 Lin Eq. (B4) in terms of £’ 2)

1y (Z2) 1A (77t

.
@2 1— 207 (ZT2) 129

ey -

T B6

1y, (Z'2) 109 (77t (B0
1 — [P

=(Z'2

where p, denotes the orthogonal projection matrix on the
range ofz
Replacing Egs. (B5) and (B6) into Eq. (B4), we finally
obtain
i

o0~ 0. — 12‘7 B7
LS s~ @2 [P2lkk D

Expandinge® at 6, s and replacing Eq. (B7) into this expan-

sion, we obtain an approximate expression of the LOO error

(36)
k r*

k=1toN
1 - [Pk

(B8)

In practice, the diagonal terms pf are computed using
the singular value factorization af= u3v', whereu is an
orthogonal N,N) matrix, 3 is a diagonal,g) matrix, andv
is an orthogonal d,q) matrix (see, Golub & Van Loan,
1983). Then:

q
[Pdic= > [uli  k=1toN (B9)

i=1

The diagonal elements pf that differ from 1 by a threshold
consistent with the computer precision are considered as
equal to 1 (theoretically, the values of the] are
comprised between W/and 1).
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