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Abstract

We present the theoretical results about the construction of confidence intervals for a nonlinear regression based on least squares
estimation and using the linear Taylor expansion of the nonlinear model output. We stress the assumptions on which these results are
based, in order to derive an appropriate methodology for neural black-box modeling; the latter is then analyzed and illustrated on simulated
and real processes. We show that the linear Taylor expansion of a nonlinear model output also gives a tool to detect the possible ill-
conditioning of neural network candidates, and to estimate their performance. Finally, we show that the least squares and linear Taylor
expansion based approach compares favorably with other analytic approaches, and that it is an efficient and economic alternative to the
nonanalytic and computationally intensive bootstrap methods.q 2000 Elsevier Science Ltd. All rights reserved.
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selection; Approximate leave-one-out score

1. Introduction

For any modeling problem, it is very important to be able
to estimate the reliability of a given model. This problem
has been investigated to a great extent in the framework of
linear regression theory, leading to well-established results
and commonly used methods to build confidence intervals
(CIs) for the regression, that is the process output expecta-
tion (Seber, 1977); more recently, these results have been
extended to nonlinear models (Bates & Watts, 1988; Seber
& Wild, 1989). In the neural network modeling studies
however, these results are seldom exploited, and generally
only an average estimate of the neural model reliability is
given through the mean square model error on a test set; but
in an application, one often wishes to know a CI at any input
value of interest. Nevertheless, thanks to the increase of
computer power, the use of bootstrap methods has increased

in the past years (Efron & Tibshirani, 1993). These
nonanalytic methods have been proposed to build CIs for
neural networks (Heskes, 1997; Paass, 1993; Tibshirani,
1996), but with the shortcoming of requiring a large number
of trainings.

This paper presents an economic alternative to the
construction of CIs using neural networks. This approach
being built on thelinear least squares (LS) theory applied to
the linear Taylor expansion (LTE) of the output of nonlinear
models, we first recall how to establish CIs for linear models
in Section 2, and then approximate CIs for nonlinear models
in Section 3. In Section 4, we exploit these known theore-
tical results for practical modeling problems involving
neural models. We show that the LTE of a nonlinear
model output not only provides a CI at any input value of
interest, but also gives a tool to detect the possible ill-condi-
tioning of the model, and as in Monari (1999) and Monari
and Dreyfus (submitted), to estimate its performance
through an approximate leave-one-out (LOO) score. A
real-world illustration is given through an industrial appli-
cation, the modeling of the elasticity of a complex material
from some of its structural descriptors. Section 5 compares
the LS LTE approach to other analytic approaches, and
discusses its advantages with respect to bootstrap
approaches.

We consider single-output models, since each output of a
multi-output model can be handled separately. We deal with
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Nomenclature

We distinguish between random variables and their values (or realizations) by using upper- and lowercase letters; all
vectors are column vectors, and are denoted by boldface letters; nonrandom matrices are denoted by light lowercase letters

x Nonrandomn-input vector
Yp � Ypux Random scalar output depending onx
E�Ypux� Mathematical expectation, or regression function, ofYp given x
W Random variable with zero expectation denoting additive noise
s 2 Variance ofW
{ x k

; yk
p} k�1 to N Data set ofN input–output pairs, where the {xk} are nonrandomn-vectors, and the {yk

p} are the
corresponding realizations of the random outputs {Yk

p � Ypuxk}
{ �xk�Tu; u [ Rn} Family of linear functions ofx parameterized byu
up Unknown trueq-parameter vector (q� n in the linear case)
x� �x1 x2 …xN�T Nonrandom (N,n) input matrix
Yp � �Y1

p Y2
p … YN

p �T RandomN-vector of the outputs of the data set
W � �W1 W2 … WN�T RandomN-vector withE�W� � 0
J(u) Value of the least squares cost function
QLS Least squares estimator ofup

uLS Least squares estimate ofup

R� Yp 2 xQLS Least squares residual randomN-vector in the linear case
r Value ofR
m�x� Range ofx (linear manifold)
px Orthogonal projection matrix onm�x�
S2 Estimator ofs 2

s2 Value ofS2

{ f �x;u�; u [ R q} Family of nonlinear functions ofx parameterized byu
f �x; u� N-vector� f �x1

;u�…f�xk
;u�…f�xN

; u��T
R� Yp 2 f �x;QLS� Least squares residual randomN-vector
j � �j 1 j 2 …jN�T Unknown nonrandom (N,q) matrix with j k � 2f �xk

;u�=2uuu�up

m(j) Range ofj
pj Orthogonal projection matrix onm(j)
z� �z1 z2 …zN�T Matrix approximatingj with zk � 2f �xk

;u�=2uuu�uLS

m(z) Range ofz
pz Orthogonal projection matrix onm(z)
IN (N,N) identity matrix
u�k�LS Leave-one-out (thekth example) least squares estimate ofup

{ ek} k�1 to N Leave-one-out errors
nh Number of hidden neurons of a neural network
H Random Hessian matrix of the cost function
h Value of the Hessian matrix of the cost function
vard� f �x1QLS��ref Reference variance estimate

vard� f �x;QLS��LTE LTE estimate of the variance of a nonlinear model output

vard� f �x;QLS��Hessian Hessian estimate of the variance of a nonlinear model output

vard� f �x;QLS��sandwich Sandwich estimate of the variance of a nonlinear model output

Abbreviations
CI confidence interval
LOO leave-one-out
LS least squares
LTE linear Taylor expansion
SISO single input - single output
MISO multi input - single output
MSTE mean square training error
MSPE mean square performance error



static modeling problems for the case of a nonrandom (noise
free) n-input vector x � �x1 x2 … xn�T; and a noisy
measured outputyp which is considered as the actual
value of a random variableYp � Ypux depending onx. We
assume that there exists an unknown regression function
E�Ypux� such that for any fixed value ofx:

Ypux � E�Ypux�1 Wux �1�
whereWux is thus a random variable with zero expectation.
A family of parameterized functions {f �x;u�; x [ Rn

; u [
Rq} is called anassumedmodel. This assumed model is said
to betrue if there exists a valueup of u such that,;x in the
input domain of interest,f �x;up� � E�Ypux�: In the follow-
ing, a data set ofN input–output pairs {xk

; yk
p} k�1 to N is

available, where thexk � �xk
1 xk

2 … xk
n�T are nonrandom

n-vectors, and the {yk
p} are the corresponding realizations

of the random variables {Yk
p � Ypuxk}. 1 The goal of the

modeling procedure is not only to estimate the regression
E�Ypux� in the input domain of interest with the output of a
model, but also to compute the value of a CI for the regres-
sion, that is the value of a random interval with a chosen
probability to contain the regression. For the presentation of
the results of linear and nonlinear regression estimation, we
deal with the true model (a model which is linear in the
parameters in Section 2, a nonlinear one in Section 3), i.e.
we consider that a family of functions containing the regres-
sion is known. In Section 4, we consider the general realistic
case of neural black-box modeling where a preliminary
selection among candidate neural models is first performed
because a true model is not known a priori.

2. Confidence intervals for linear models

We consider a true linear assumed model, that is the
associated family of linear functions {xTu; x [ Rn

; u [
Rn} contains the regression; Eq. (1) can thus be uniquely
rewritten as:

Ypux � xTup 1 Wux �2�

where up is an unknownn-parameter vector. Model (2)
associated to the data set leads to:

Yp � xup 1 W �3�
where x� �x1 x2 …xN�T is the nonrandom (N,n) input
matrix, Yp � �Y1

p Y2
p … YN

p �T and W � �W1 W2 … WN�T
are randomN-vectors, withE�W� � 0: Geometrically, this
means thatE�Ypux� � xup belongs to the solution surface,
the linear manifoldm(x) of the observation spaceRN

spanned by the columns of the input matrix2 (the range of
x). We assume thatm(x) is of dimensionn, that is rank�x� �
n: In other words, the model is identifiable, i.e. the data set
is appropriately chosen, possibly using experimental
design.

2.1. The linear least squares solution

The LS estimateuLS of up minimizes the empirical
quadratic cost function:

J�u� � 1
2

XN
k�1

�yk
p 2 �xk�Tu�2 � 1

2 �yp 2 xu�T�yp 2 xu� �4�

The estimateuLS is a realization of the LS estimatorQLS

whose expression is:

QLS � �xTx�21xTYp � up 1 �xTx�21xTW �5�
As the assumed model is true, this estimator is unbiased.
The orthogonal projection matrix onm�x� is px �
x�xTx�21xT

: It follows from Eq. (5) that the unbiased LS
estimator ofE�Ypux� is:

xQLS � xup 1 pxW �6�
that is the sum ofE�Ypux� and of the projection ofW on
m(x), as shown in Fig. 1. LetR denote the residual random
N-vectorR� Yp 2 xQLS; that is the vector of the errors on
the data set, then:

R� �IN 2 px�W �7�
Under the assumption that the {Wk} are identically distrib-
uted and uncorrelated (homoscedastic), i.e. the noise covar-
iance matrix isK�W� � s 2IN; it follows from Eq. (5) that
the variance of the LS estimator of the regression for any
input x of interest is:3

var�xTQLS� � s 2xT�xTx�21x �8�
Using Eq. (7), we obtain the unbiased estimator

S2 � RTR
N 2 n

of s 2; the corresponding (unbiased) estimate of the variance
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Fig. 1. Geometric representation of the linear LS solution (true assumed
model).

1 We recall that we distinguish between random variables and their
values (or realizations) by using upper and lowercase letters, e.g.Yk

p and
yk

p; all vectors are column vectors, and are denoted by boldface letters, e.g.
then-vectorsx and {xk} ; nonrandom matrices are denoted by light lower-
case letters (except the unambiguous identity matrix).

2 m(x) is sometimes called the “expectation surface” (Seber & Wild,
1989); as a matter of fact, the solution surface coincides with the expecta-
tion surface only when the assumed model is true.

3 We recall thatx (boldface) is the (n, 1) input vector of interest, and that
x is the experimental (N, n) input matrix.



of x TQLS is thus:

dvar�xTQLS� � s2xT�xTx�21x �9�
wheres is the value ofS.

2.2. Confidence intervals for a linear regression

If the {Wk} are homoscedastic gaussian variables, that is
W ! NN�0; s 2IN� :

Theorem 1.

QLS 2 up ! Nn�0; s 2�xTx�21� �10�

Theorem 2.

RTR
s 2 ! x2

N2n �11�

Theorem 3. QLS is statistically independent fromRTR:

The proof of the above theorems follows from Fig. 1 and
from the Fisher–Cochrane theorem (Goodwin & Payne,
1977), see for instance (Seber, 1977).

The goal is to build a CI for the regression value
E�Ypux� � xTup; for any input vectorx of interest. The
variance of the measurementss 2 being unknown, let us
build a normalized centered gaussian variable where both

E�Ypux� ands appear:

x TQLS 2 E�Ypux�
s

��������������
x T�xTx�21x

p ! N�0; 1� �12�

Thus, using the Pearson variable (11), which is independent
from Eq. (12) according to Theorem 3, we obtain the follow-
ing Student variable:

xTQLS 2 E�Ypux�
S
��������������
xT�xTx�21x

p ! Student�N 2 n� �13�

A 100(12 a )% CI for E�Ypux� is thus:

xTuLS ^ tN2n 1 2
a

2

� �
s
��������������
xT�xTx�21x

q
�14�

wheretN2n is the inverse of the Student(N 2 n) cumulative
distribution.

Note that Eq. (14) allows to compute a CI corresponding
to any input vector, and that it is much more informative
than average values such as that the mean square error on
the data set, or the mean of the variance estimate over the
data set;4 as a matter of fact, the latter invariably equals
s2n=N:
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Fig. 2. CI for process #1, a simulated linear SISO process (true assumed model withn� 2 parameters): (a) regression (thin line), data set (crosses), model
output and 99% CI (thick lines); and (b) true variance (thin line) and LS estimate of the variance (thick line) ofxTQLS.

4 The mean of the variance estimate over the training data set is:
1
N

PN
k�1 s2�xk�T�xTx�21xk � s2

N

PN
k�1 �px�kk � s2

N
trace�px�: As px is the

orthogonal projection matrix on an-dimensional subspace,trace�px� � n:



2.3. Example of a simulated linear SISO process
(process #1)

We consider a simulated single input-single output
(SISO) linear process:

yk
p � up1

1 up2
xk 1 wk k � 1 to N �15�

We takeup1
� 1; up2

� 1; s 2 � 0:5; N � 30: The inputs
{ xk} of the data set are uniformly distributed in [23; 3],
as shown in Fig. 2a. The family of functions {u1 1 u2x; u [
R2} is considered, that is the assumed model is true, and we
choose a confidence level of 99%�t28�1%� � 2:76�: The LS
estimation leads tos2 � 0:29; i.e. underestimates the noise
variance. Fig. 2b displays the estimate (9) of the variance of
xTQLS; and the true variance (8). The estimatorS2 of the
noise variance being unbiased, the difference between the
estimated variance (9) and the (usually unknown) true
variance (8) is only due to the particular values of the
measurement noise. Fig. 2(a) shows the regression
E�Ypux�; the data set, the model output and the 99% CI for
the regression computed with Eq. (14).

3. Approximate confidence intervals for nonlinear
models

We consider a family of nonlinear functions {f �x;u�; x [
Rn

; u [ Rq} which contains the regression, that is the
assumed model is true; Eq. (1) can thus be rewritten as:

Ypux � f �x;up�1 Wux �16�
whereup is an unknownq-parameter vector. We denote by
f �x; up� the unknown vector � f �x1

; up�…f�xk
; up�…

f �xN
; up��T defined on the data set, thus:

Yp � f �x;up�1 W �17�
As in Section 2,x denotes the (N,n) input matrix,5 andYp

and W are randomN-vectors withE�W� � 0: Geometri-
cally, this means thatE�Ypux� belongs to the solution

surface, the manifoldm� f �x; u�� � { f �x;u�; u [ Rq} of
RN

:

3.1. The linear Taylor expansion of the nonlinear least
squares solution

A LS estimateuLS of up minimizes the empirical cost
function:6

J�u� � 1
2

XN
k�1

�yk
p 2 f �xk

;u��2 � 1
2 �yp 2 f �x;u��T�yp 2 f �x;u��

�18�
The estimateuLS is a realization of the LS estimatorQLS.

Efficient algorithms are at our disposal for the minimization
of the cost function (18): they can lead to an absolute mini-
mum, but they do not give an analytic expression of the
estimator that could be used to build CIs. In order to take
advantage of the results concerning linear models, it is
worthwhile considering a linear approximation ofQLS

which is obtained by writing the LTE off(x, u ) around
f(x, up):

f �x;u� < f �x; up�1
Xq
r�1

 
2f �x;u�
2ur

�����
u�up

�ur 2 upr
�
!

� f �x; up�1 j T�u 2 up� �19�
where

j � 2f �x;u�
2u

����
u�up

Thus, with the matrix notation:

f �x;u� < f �x; up�1 j�u 2 up� �20�
where

j � �j 1j 2…jN�T
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Fig. 3. Geometric representation of the nonlinear LS solution and of its LTE approximation (true assumed model).

5 In the case of a nonlinear model,x is merely a two-dimensional array.

6 In the case of a multilayer neural network, the minimum value of the
cost function can be obtained for several values of the parameter vector;
but, since the only function-preserving transformations are neuron
exchanges, as well as sign flips for odd activation functions like the hyper-
bolic tangent [Sussman 1992], we will legitimately consider the neighbor-
hood of one of these values only.



and

j k � 2f �xk
; u�

2u

�����
u�up

The (N, q) matrix j is the nonrandom and unknown (since
up is unknown) Jacobian matrix off. Using Eq. (20), one
obtains, similarly to the linear case, the following approx-
imation ofQLS (see Appendix A.1 for a detailed derivation
of Eqs. (21) and (23)):

QLS < up 1 �j Tj�21j TW �21�
The rangem(j ) of j is tangent to the manifoldm( f(x, u)

at u � up; this manifold is assumed to be of dimensionq,
hence rank�j� � q: The matrix pj � j�j Tj�21j T is the
orthogonal projection matrix onm(j ). From Eqs. (20) and
(21), the LS estimator ofE�Ypux� can be approximately
expressed by:

f �x;QLS� < f �x;up�1 pj W �22�
i.e. it is approximately the sum ofE�Ypux� and of the projec-
tion of W onm(j), as illustrated in Fig. 3. IfK�W� � s 2IN

(homoscedasticity), the variance of the model output, that is
the LS estimator of the regression, for an inputx is
approximately:

var� f �x;QLS�� < s 2j T�j Tj�21j �23�
In the following, approximation (23) will be termed “the
LTE approximation” of the model output variance. LetR
denote the LS residual vectorR� Yp 2 f �x;uLS�; thus:

R < �IN 2 pj�W �24�
Under the assumption of appropriate regularity condi-

tions on f, and for largeN, the curvature of the solution
surface7 m( f(x, u)) is small; thus, using Eq. (24), one
obtains the asymptotically (i.e. whenN!∞) unbiased esti-
matorS2 � �RTR�=�N 2 q� of s 2. In Eq. (23), the matrixj
takes the place of matrixx in the linear case. But, as opposed
to x, j is unknown since it is a function of the unknown
parameterup. The (N, q) matrix j may be approximated by

z� �z1z2…zN�T

where

zk � 2f �xk
;u�

2u

�����
u�uLS

;

that is

zk
r � 2f �xk

;u�
2ur

�����
u�uLS

�25�

In the following, we assume that rank�z� � q: Like the

matrix j , the vectorj is not available, and its value may
be approximated by:

z� 2f �x;u�
2u

����
u�uLS

�26�

From Eqs. (23), (25) and (26), the LTE estimate of the
variance of the LS estimator of the regression for an input
x is thus:

dvar� f�x;QLS��LTE � s2zT�zTz�21z �27�

3.2. Approximate confidence intervals for a nonlinear
regression

If W! NN�0;s 2IN�; and for largeN, it follows from the
above relations and from the linear LS theory (Seber &
Wild, 1989) that:

Theorem 4.

QLS ,! Nq�up;s
2�j Tj�21� �28�

Theorem 5.

RTR
s 2 ,! x2

N2q �29�

Theorem 6. QLS is approximately statistically indepen-
dent fromRTR:

Using Eqs. (23) and (28), let us again build a quasi-normal-
ized and centered gaussian variable where bothE�Ypux� and
s appear:

f �x;QLS�2 E�Ypux�
s

���������������
j T�j Tj�21j

q ,! N�0;1� �30�

Thus, the variable (29) being approximately independent
from Eq. (30) according to Theorem 6, we have:

f �x;QLS�2 E�Ypux�
S
���������������
j T�j Tj�21j

q ,! Student�N 2 q� �31�

A 100(12 a )% approximateCI for E�Ypux� is thus:

f �x; uLS�^ tN2q 1 2
a

2

� �
s
�������������
zT�zTz�21z

q
�32�

Note that, whenN is large, the Student distribution is close
to the normal distribution, and thustN2q�1 2 a

2 � < n�1 2 a
2 �;

wheren is the inverse of the normal cumulative distribution.
Like in the linear case, Eq. (32) allows to compute a CI at

any inputx of interest, which gives much more information
than the value of the mean variance estimate over the data
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7 The curvature is usually decomposed in two components: (i) the intrin-
sic curvature, which measures the degree of bending and twisting of the
solution surfacem( f(x, u )), and (ii) the parameter-effects curvature, which
describes the degree of curvature induced by the choice of the parametersu .



set: as a matter of fact, the latter always approximately
equalss2�q=N�:

From a practical point of view, the construction of a CI
for a neural model output at any inputx of interest involves
once and for all the computation of the matrixz, that is the
N × q partial derivatives of the model output with respect to
the parameters evaluated atuLS for the data inputs
{ xk} k�1 to N; and, for eachx value, that ofz, i.e. the deriva-
tives atx. In the case of a neural model, these derivatives are
easily obtained with the backpropagation algorithm.

All the previous results and the above considerations are
valid provided an absolute minimum of the cost function
(18) is reached. In real-life, several estimations of the para-
meters must thus be made starting from different initial
values, the estimate corresponding to the lowest minimum
being kept in order to have a high probability to obtain an
absolute minimum. In the examples of this work, the algo-
rithm used for the minimization of the cost function is the
Levenberg algorithm, as described for example in Bates and
Watts (1988), and several trainings are performed. The
probability of getting trapped in a relative minimum
increasing with the number of parameters of the network
and decreasing when the size of the data set increases, the
number of trainings is chosen accordingly.

3.3. Quality of the approximate confidence intervals

3.3.1. Theoretical analysis
The quality of the approximate CI depends essentially on

the curvature of the solution surfacem� f �x; u��; which
depends on the regularity off and on the value ofN. In
practice,f is often regular enough for a first-order approx-
imation to be satisfactory, provided thatN is large enough.

Thus, if N is large: (i) as in the linear case, the estimator of
the noise varianceS2 is unbiased, and the difference between
s2 ands 2 is only due to the particular values of the noise;
and (ii) the variance off(x,QLS) is small, anduLS is likely to
be close toup: zandzare thus likely to be good approxima-
tions of, respectively,j andj . A reliable estimate of a CI
may thus be obtained from the LTE variance estimate (27).
On the other hand, ifN is too small: (i) as opposed to the
linear case, even if the assumed model is true, the estimator
of the noise varianceS2 is biased; and (ii) the variance off(x,
QLS) is large, anduLS is likely to differ fromup: zandz risk
to be poor approximations ofj andj . Thus, if N is diag-
nosed as too small, one cannot “have confidence” in the
confidence intervals (32), and additional data should be
gathered.

3.3.2. Quantitative analysis
As detailed for example by Antoniadis, Berruyer and

Carmona (1992), Bates and Watts (1988) and Seber and
Wild (1989) different measures of the curvature can be
computed, and can be used in each particular case to eval-
uate the accuracy of the LTE. In Section 4.3 dealing with
neural network modeling, we give indications on how to
judge if N is large enough for the approximate CI to be
accurate.

In order to evaluate the accuracy of the LTE variance
estimate (27) when dealing with simulated processes, we
introduce an estimate of the unknown true variance off(x,
QLS) that is not biased by curvature effects,the reference
variance estimatevard� f �x1QLS��ref: This estimate is
computed on a large numberM of other sets ofN outputs
corresponding to the inputs of the training set, and whose
values are obtained with different realizations (simulated
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Fig. 4. CI for process #2, a simulated “neural” SISO process (the assumed model, a two hidden neurons network withq� 7 parameters, is true): (a) regression
(thin line), theN� 50 examples of the data set (crosses), model output and 99% approximate CI (thick lines); and (b) reference (thin line) and LTE (thick line)
estimates of the variance off(x,QLS).



values) of the noiseW. The ith LS estimatef �x;u�i�LS� of
E�Ypux� is computed with data seti (i � 1 to M), and the
reference estimate of the variance at inputx is computed as:

vard� f �x1QLS��ref � 1
M

XM
i�1

� f �x;u�i�LS�2 k f �x�l�2;

wherek f �x�l � 1
M

XM
i�1

f �x; u�i�LS� (33)

In the nonlinear case, we thus use three notions related to the
(true) variance off(x,QLS): (1) the LTE variance approxi-
mation (23), which is a good approximation of the true
variance if the curvature is small, as we show in Section
3.4.3, and which can be computed only when the process is

simulated; (2) the LTE variance estimate (27), which is the
estimate that can be computed in real-life; and (3) the refer-
ence variance estimate (33), which tends to the true variance
whenM tends to infinity because it is not biased by curva-
ture effects, and which can be computed only when the
process is simulated.

3.4. Illustrative examples

As we are concerned with neural models, and since, in
this section, the assumed model is true, the following
examples bring into play “neural” processes, that is
to say processes whose regression function is the
output of a neural network; the more realistic case of
arbitrary processes for whom a family of nonlinear
functions (a neural network with a given architecture)
containing the regression is unknown is tackled in the next
section.

3.4.1. Example of a simulated “neural” SISO process
(process #2)

We consider a SISO process simulated by a neural
network with one hidden layer of two hidden neurons
with hyperbolic tangent activation function and a linear
output neuron:

yk
p � up1

1 up2
tanh�up3

1 up4
xk�

1up5
tanh�up6

1 up7
xk�1 wk k � 1 to N �34�

We takeup � �1; 2; 1; 2; 21; 21; 3�T; s 2 � 1022
; N �

50: The inputs {xk} of the data set are uniformly distributed
in [23; 3], as shown in Fig. 4a. The family of functions
{u1 1 u2 tanh�u3 1 u4x�1 u5 tanh�u6 1 u7x�; u [ R7} is
considered, that is the assumed model is true, and we choose
a confidence level of 99%�t43�1%� � 2:58�: The minimiza-
tion of the cost function with the Levenberg algorithm leads
to s2 � 1:02× 1022. Fig. 4b displays the LTE estimate of
the variance off(x, QLS) (27), and the reference estimate
(33) computed overM � 10 000 sets. Fig. 4a shows the
regression, the data set used for the LS estimation, and the
corresponding model output and 99% CI (32). The model
being true and the sizeN � 50 of the data set being rela-
tively large with respect to the number of parameters and to
the noise variance, we observe that: (i)s2 < s 2; (ii) the
model output is close to the regression, leading to good
approximations ofj and ofj by z andz. Thus, (i) and (ii)
lead to an accurate LTE estimate of the variance, and hence
of the CI.

3.4.2. Example of a simulated “neural” MISO process
(process #3)

We consider a MISO process simulated by a neural
network with two inputs, one hidden layer of two “tanh”
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Fig. 5. CI for process #3, a simulated “neural” MISO process (the assumed
model, a two hidden neurons network withq� 9 parameters, is true): (a)
theN � 100 inputs of the data set (circles) and regression; (b) LTE estimate
of the variance off(x,QLS); and (c) difference between the reference and the
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hidden neurons and a linear output neuron:

yk
p � up1

1 up2
tanh�up3

1 up4
xk

1 1 up5
xk

2�

1up6
tanh�up7

1 up8
xk

1 1 up9
xk

2�1 wk k � 1 to N �35�

We take up � �1; 1; 0; 1; 21; 22; 0; 1; 1�T; s 2 �
1021

; N � 100: The inputs {xk
1} and {xk

2} of the data set
are uniformly distributed in [23; 3]. As for process #2, the
assumed model is true, i.e. the neural network associated to
Eq. (35) is used; the minimization of the cost function with
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the Levenberg algorithm leads tos2 � 9:73× 1022. Fig. 5a
shows the inputs of the data set and the regression; Fig. 5b
displays the LTE estimate of the variance off(x, QLS) (27);
Fig. 5c displays the difference between the reference
variance estimate (33) computed overM � 10 000 sets,
and the LTE variance estimate (27). Ass2 is slightly smaller
than s 2, the variance is globally slightly underestimated.
However except in the domain around the corner (3, 3)
where the density of the inputs is lower, and where the slope
of the output surface is steep, the LTE variance estimate is
satisfactory. A reliable estimate of the CI may thus be obtained.

3.4.3. Accuracy of the LTE variance approximation
(processes #2 and #3)

Let us now show on the example of processes #2 and #3
that the curvature of the solution surface is small enough for
the LTE approximation of the variance (23) to be satisfac-
tory. For both processes, we have computed approximation
(23), using the values ofj and ofj (at up) and the value of
s 2 used for the noise simulation. As shown in Fig. 6a and b
for process #2, the LTE approximation of the variance (23)
is very close to the reference variance estimate. As a matter
of fact, the difference between them (Fig. 6b) is only due to
the curvature, which is small asN � 50 is large with respect
to the complexity of the regression. Expression (23) also
leads to satisfactory results in the case of process #3 as
shown in Fig. 7a and b�N � 100; two inputs). This tends
to show that a first-order approximation of the variance is
often sufficient, and that it is not worth to bother with a
higher-order approximation. Seber and Wild (1989) intro-
duces a quadratic approximation of the LS estimator using
the curvature of the solution surface. This approximation
uses arrays of projected second derivatives, the intrinsic
and parameter-effects curvatures arrays; but their
presentation is beyond the scope of this paper.

4. Confidence intervals for neural networks

In the previous sections, the model used for the construc-
tion of CIs is true. For real-world black-box modeling
problems however, a family of functions that contains the
regression is not known a priori. The first task is thus to
select the less complex family of functions which contains
a function approximating the regression to a certain degree
of accuracy in the input domain delimited by the data set. In
practice, several families of increasing complexity (for
example neural networks with one layer of an increasing
numbernh of hidden units, and a linear output neuron) are
considered, and the data set is used both to estimate their
parameters, and to perform the selection between the candi-
dates. In order to retain the less complex family containing a
good approximation of the regression, it is of interest to
perform the selection only between neural candidates
which are not unnecessarily large, and which are (that is
their matrixz is) sufficiently well-conditioned to allow the

computation of the approximate Cl (32). We propose to
discard too large models by a systematic detection of ill-
conditioning, and to perform the selection among the
approved, i.e. well-conditioned models using an approxi-
mate value of their LOO score whose computation does
not require further training. Both the ill-conditioning detec-
tion and the estimation of the LOO score of a neural candi-
date are based on the LTE of its output.

4.1. III-conditioning detection for model approval

A too large neural model, trained up to convergence with
a simple LS cost-function, will generally overfit. Overfitting
is often avoided by using early stopping of the training
algorithm or by adding regularization terms in the cost func-
tion, e.g. “weight decay” (Bishop, 1995). Unfortunately, as
only the estimator whose value corresponds to an absolute
minimum of the quadratic cost function (18) without weight
decay terms is unbiased, both early stopping and weight
decay introduce a bias in the estimation of the regression:
the corresponding estimates thus lead to questionable CIs
for the regression.

To detect and discard too large networks, we propose,
after the training of each candidate up to a (hopefully) abso-
lute minimum of the cost function (18), to check the condi-
tioning of their matrixz (see Rivals & Personnaz, 1998).
The fact thatz be ill-conditioned is the symptom that some
parameters are useless, since the elements ofz represent the
sensibility of the model output with respect to the para-
meters. A typical situation is the saturation of a “tanh”
hidden neuron, a situation which generates in the matrixz
a column of11 or 21 that corresponds to the parameter
between the output of the saturated hidden neuron and the
linear output neuron, and columns of zeros that correspond
to the parameters between the network inputs and the satu-
rated hidden neuron.8 In practice, we propose to perform a
singular value factorization ofz, and to compute its condi-
tion number, that is the ratio of its largest to its smallest
singular value, see, e.g. Golub & Van Loan, 1983. The
matrix z can be considered as very ill-conditioned when
its condition number reaches the inverse of the computer
precision, which is of the order of 10216.

Further, in order to be able to compute the approximate
CI (32) which involve (zTz)2 1, the cross-product Jacobian
matrix zTz must also be well conditioned. As the condition
number ofzTz is the square of the condition number ofz, the
networks whose matrixz has a condition number much
larger than 108 cannot be approved.

There are other studies of the ill-conditioning of neural
networks, but they deal with their training rather than with
their approval, like in the work by Zhou and Si (1998) where
an algorithm avoiding the Jacobian rank deficiency is
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relative minima, and leads to retrain the neural candidate starting from
different initial weights.



presented, or by Saarinen, Bramley and Cybenko (1993)
where the Hessian rank deficiency is studied during the
training. In our view, rank deficiency is not very relevant
during the trainingbecause with a Levenberg algorithm, the
matrix to be “inverted” is made well conditioned by the
addition of a scalar matrixl lq, l . 0; to the cross-product
Jacobian.

4.2. Approximate leave-one-out scores for model selection

The selection among the networks which have been
approved can be performed with statistical tests (Rivals &
Personnaz, 1998; Urbani, Roussel-Ragot, Personnaz &
Dreyfus, 1994). Another approach, cross validation, consists
in partitioning the data set in training and test sets, and in
selecting the smallest network leading to the smallest mean
square error on the test sets.9 One of the drawbacks of cross
validation is to require a successful training of the candidate
models on many test sets, that isN successful trainings in the
case of LOO cross validation. Let us denote byek the error
obtained on the left out examplek with the model trained on
theN 2 1 remaining examples (kth test set). In this section,
we derive an approximate expression ofek, expression
which allows an economic estimation of the LOO score

without performing theseN time-consuming trainings of
each candidate network, as proposed in Monari (1999)
and Monari and Dreyfus (submitted)).

In the case of a linear model, it is well known (Efron &
Tibshirani, 1993) that thekth LOO errorek can be directly
derived from the corresponding residualr k:

ek � rk

1 2 �px�kk
k � 1 to N �36�

where, we recall,px denotes the orthogonal projection
matrix on the range ofx. Expression (36) holds irrespective
of whether or not the assumed model is true.

In the case of a nonlinear model, we show (see Appendix
B) that a useful approximation of thekth LOO error can be
obtained using the LTE of the model output atuLS:

ek <
rk

1 2 �pz�kk
k � 1 to N �37�

wherepz denotes the orthogonal projection matrix on the
range ofz. The approximation (37) is thus similar to Eq.
(36).10 Like in the linear case, expression (37) holds
independently on the assumed model being true or not.
Hence the LOO score:

LOO score� 1
N

XN
k�1

�ek�2 �38�
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Fig. 8. Schematic evolution of theMSTE(crosses) andMSPE(circles) as a function of the number of hidden neurons of the neural network candidates, the
network with the smallestMSPEbeing selected: (a) large data set: the ratioMSPE/MSTEof the selected network (six hidden neurons) is roughly equal to 1,
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9 Note that statistical tests may advantageously be used complementarily
to cross validation in order to take a decision (Rivals and Personnaz, 1999);
these tests can also be established by applying LS theory to the LTE of
nonlinear models (Bates and Watts, 1988), but this exceeds the scope of this
paper.

10 An expression similar to (37) is proposed in Hansen and Larsen (1993),
but unfortunately, it is not valid even in the linear case.



This LOO score can be used as an estimate of the mean
square performance error, and we thus denote it as MSPE,
as opposed to�2=N�J�uLS�; the mean square training error
(MSTE). The interested reader will find in the work of
Monari (1999) and Monari and Dreyfus (submitted) a
systematic model selection procedure based on both the
approximate LOO score and the distribution of the values
of the {[pz]kk}. Nevertheless, another performance measure
could be chosen as well (a 10-fold cross validation score, a
mean square error on an independent set, etc.).

4.3. Accuracy of the approximate confidence intervals

The quality of the selected modelf(x, uLS), and thus of the
associated approximate CI, depends essentially on the size
N of the available data set with respect to the complexity of
the unknown regression function and to the noise variance
s 2.

1. N is large: it is likely that the selected family
{ f �x;u�; u [ R q} contains the regressionE(Ypux), i.e.
that the LS estimator is asymptotically unbiased, that
the modelf(x,uLS) is a good approximation ofE(Ypux)
in the domain delimited by the dataset, and that the
curvature is small. In this case, reliable CIs can be
computed with Eq. (32).

2. N is small: it is likely that the selected family
{ f �x; u�; u [ Rq} is too small11 to containE(Ypux), i.e.
that the LS estimator is biased, and that the model

f(x,uLS) thus underfits. The approximate CIs are thus
questionable, and additional data should be gathered.

A good indicator of whether the data set sizeN is large
enough or not is the ratioMSPE/MSTEof the selected
candidate: if its value is close to 1, thenN is probably
large enough, whereas a large value is the symptom of a
too small data set size, as shown in Fig. 8 (and as illustrated
numerically in the following examples).

4.4. Example of a simulated nonlinear SISO process
(process #4)

This first example is based on a simulated process. Like in
the previous sections, a reference estimate of the variance of
the output of a neural network is made, usingM � 1000
other sets; to ensure that an absolute minimum is reached
on each of theM sets, 5–30 trainings (depending on the
network size) with the Levenberg algorithm for different
initializations of the weights are performed, and the weights
giving the smallest value of the cost function (18) are kept.
We consider the SISO process simulated with:

yk
p � sinc�2�xk 1 5��1 wk k � 1 to N �39�

where sinc denotes the cardinal sine function; we takes 2 �
1022

:

First, a data set ofN � 200 input–output pairs is computed,
with input values uniformly distributed in [25; 5]. As a
family of nonlinear functions (a neural network with a
given architecture) containing the regression is not known
a priori, neural networks with a linear output neuron and a
layer ofnh “tanh” hidden neurons are trained. The numerical
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Fig. 9. CI for process #4, a simulated nonlinear SISO process, in the case of a data set of sizeN� 200 (the selected model is a four hidden neurons network
with q� 13 parameters): (a) regression (thin line), data set (small points), model output and 99% approximate CI (thick lines); and (b) reference (thin line)and
LTE (thick line) estimates of the variance off(x,QLS).

11 It will generally not be too large since the approval procedure proposed
in Section 4.1 prevents from selecting a neural network with useless
parameters.



results are summarized in Table 1. We list the number of
parametersq, the MSTE (i.e. the smallest MSTE obtained
with the network for its different random weight initializa-
tions), the condition number ofz, and, if the latter is not too
large, the MSPE (corresponding approximate LOO score
computed with Eqs. (37) and (38)) and the ratio MSPE/
MSTE. The candidates with more than six hidden neurons
cannot be approved, because cond�z� @ 108 : for nh � 7;
cond�z� � 1011

: The optimal number of neurons
nopt

h �200� � 4 is selected on the basis of the MSPE.
The fact that the corresponding ratio MSPE/MSTE is
close to 1 is the symptom thatN is large enough, so
that the selected family of networks contains a good
approximation of the regression, and that the curvature
is small (case 1 of Section 4.3). The results obtained for
the selected neural network are shown in Fig. 9. The
model output is close to the regression, the LTE
variance estimate (27) is close to the reference variance
estimate (33), and the CI is thus accurate.

Second, a data set ofN � 30 input–output pairs is

computed, the numerical results being summarized in
Table 2. The data set being much smaller, the candidates
cannot be approved as soon asnh . 4 : for nh � 5;
cond�z� � 1015

: The optimal number of neurons
nopt

h �30� � 2 is selected on the basis of the MSPE. The
ratio MSPE/MSTE of the selected network equals 2.1,
symptom thatN is relatively small, and that the selected
family of networks is likely not to contain the regression
(case 2 of Section 4.3). The results obtained for the
selected neural network are shown in Fig. 10. The family
of functions implemented by a network with two hidden
units is obviously too small to contain a good approxima-
tion of the regression, and though the estimate of the
output variance is good (it is close to the reference
variance estimate), since the output of the neural network
differs from the regression, the CI is less accurate than in
the case whereN � 200: Note that in the input domain [0,
5] where the model underfits, the variance remains
constant and low. This is due to the fact that, in this
domain, the model output is insensitive to most para-
meters of the network (this is usually the case when,
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Table 1
Results obtained on the modeling of the simulated SISO process #4 using
neural networks, in the caseN� 200

nh q MSTE Cond(z) MSPE MSPE=MSTE

1 4 1:4 × 1022 10 1:4 × 1022 1.0
2 7 1:2 × 1022 103 1:3 × 1022 1.1
3 10 9:7 × 1023 106 1:1 × 1022 1.1
4 13 8:5 × 1023 102 9:8 × 1023 1.1
5 16 8:4 × 1023 106 9:9 × 1023 1.2
6 19 8:2 × 1023 107 1:0 × 1022 1.2
7 22 7.9× 1023 1011 – –

Table 2
Results obtained on the modeling of the simulated SISO process #4 using
neural networks, in the caseN� 30

nh q MSTE Cond(z) MSPE MSPE=MSTE

1 4 2:4 × 1022 101 2:7 × 1022 1.1
2 7 1.1× 1022 106 2:3 × 1022 2.1
3 10 8:1 × 1023 103 2:4 × 1022 3.0
4 13 7:1 × 1023 104 4:3 × 101 6:1 × 103

5 16 5.0× 1023 1015 – –
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like here, the output of a network does not vary12): the
elements of thezs in this domain are thus constant and
small, hence a small and constant variance at the corre-
spondingxs.

4.5. Industrial modeling problem

We apply here the presented methodology (LS parameter
estimation, model approval, model selection, CI construc-
tion) to an industrial example first tackled in (Rivals &
Personnaz, 1998), that is the modeling of a mechanical
property of a complex material from three structural
descriptors. We have been provided with a data set ofN �
69 examples; the inputs and outputs are normalized for the
LS estimations. Thanks to repetitions in the data, and
assuming homoscedasticity, the “mean square pure error”
(Draper & Smith, 1998) gives a good estimate of the noise

variance:cs 2 � 3:38× 10
22. Using this reliable estimate,

statistical tests establish the significance of two inputs. An
affine model with these two inputs gives the estimate
s2 � 2:38× 1021 of the variance, hence the necessity of
nonlinear modeling.

Neural networks with a linear output neuron and a layer
of nh “tanh” hidden neurons are trained. The numerical
results are summarized in Table 3. It shows that the candi-

dates with more than three hidden neurons cannot be
approved: fornh � 4; cond�z� � 1012

: The optimal number
of neuronsnopt

h �69� � 2 is selected on the basis of the
MSPE. The fact that the corresponding ratio MSPE/MSTE
equals 1.3 indicates thatN is large enough, so that the
selected family of networks contains probably a good
approximation of the regression, and that the curvature is
small (case 1 of Section 4.3). The function implemented by
the selected network is shown in Fig. 11.

TheN � 69 output values of the training set are presented
in the increasing order in Fig. 12a, and the corresponding
residuals and approximate LOO errors in Fig. 12b: both
appear quite uncorrelated and homoscedastic. A CI with a
level of significance of 95% is then computed with Eq. (32);
the half width of the 95% CI on theN � 69 examples of the
data set is shown in Fig. 12c. In order to check the confi-
dence, which can be attached to the model, the variance of
its output must be examined in the whole input domain of
interest. Fig. 13 shows the isocontours of the LTE estimate
of the standard deviation of the model outputs

�������������
zT�zTz�21z

p
in the input domain defined by the training set. The compu-
tation of the LTE variance estimate thus allows not only to
construct a CI at any input of interest, but also to diagnose
that, at the top right corner of the input domain, the model
standard deviation is larger than that of the noise itself (the
highest isocontour value equals that of the estimate of the
noise standard deviations� 1:39× 1021). Little confidence
can thus be attached to the model output in this input
domain, where more data should be gathered. On the
contrary, there is a large region on the left of the diagram
where there are very few training examples, but where the
LTE estimate of the standard deviation is surprisingly rather
small; like for the modeling of process #4 in Section 4.4, this
is due to the fact that the model output is less sensitive to
most parameters of the network in this region (the model
output varies very little, see Fig. 11).

5. Comparisons

In this section, we discuss the advantages of the LS LTE
approach to the construction of confidence intervals for
neural networks with respect to other analytic approaches
and to the bootstrap methods, and compare them on
simulated examples.
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Fig. 13. Industrial modeling problem: isocontours of the LTE estimate of
the standard deviation off(x, QLS), and theN� 69 inputs of the data set
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Table 3
Results obtained on the modeling of the industrial process using neural
networks

nh q MSTE Cond(z) MSPE MSPE=MSTE

1 5 5:2 × 1022 104 6:6 × 1022 1.3
2 9 1:6 × 1022 105 2:1 × 1022 1.3
3 13 1:5 × 1022 104 1:7 × 1021 1.1× 101

4 17 1.2× 102 2 1012 – –

12 The output of a neural network with one layer of tanh hidden units
remains constant in a given domain of its inputs when the “tanh” activation
functions of all hidden units are saturated in this domain: the output of the
network is thus insensitive to all the parameters of the hidden units.



5.1. Comparison to other analytic approaches

5.1.1. Maximum likelihood approach
In the case of gaussian homoscedastic data, likelihood

theory leads to the same approximate variance (23), but
two different estimators of it are commonly encountered
(see Appendix A.2):

dvar � f�x;QLS��LTE � cs 2 zT�zTz�21z

i.e. the same estimate as Eq. (27), and also:

dvar � f�x;QLS��Hessian� cs 2 zT�h�uLS��21z �40�
which necessitates the computation of the Hessian. Efficient
methods for computing the Hessian are presented by
Buntine and Weigend (1994).

5.1.2. Bayesian approach
The Bayesian approach is an alternative approach to the

sampling theory (or the frequentist approach) for modeling
problems, and also leads to the design of CIs. These two

approaches are conceptually very different: the Bayesian
approach treats the unknown parameters as random vari-
ables, whereas they are considered as certain in the frequen-
tist approach. Nevertheless, as outlined by Bishop (1995),
MacKay (1992a,b), the Bayesian approach leads to a poster-
ior distribution of the parameters with a covariance matrix
whose expression is very similar to that of the covariance
matrix of the least-squares estimator of the parameters, and
thus to CIs which are similar to those presented in this paper.
We thus make a brief comparison between the CIs these two
approaches lead to.

The most important difference is that the estimator which
is considered here is the one whose estimate minimizes the
cost function (18), whereas in the Bayesian approach, a
cost-function with an additional weight-decay regulariza-
tion term is minimized; the presence of this weight-decay
term stems from the assumption of a gaussian prior for the
parameters.

Nevertheless, the least squares cost function (18) can be
seen as the limit where the regularization term is zero, which
corresponds to an uninformative prior for the parameters. In
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this case (that is Eq. (18) is minimized as in this paper),
there is another small difference in the Bayesian approach as
outlined by Bishop (1995) and MacKay (1992a,b). Under
hypotheses which we cannot detail here, the Bayesian
approach leads to a posterior parameter distribution with
the approximate covariance matrixs 2�h�uLS��21

; h(uLS)
being the Hessian of the cost function evaluated at the

most probable value of the parameter, that is hereuLS. A
LTE of the estimator output leads then to the following
estimate of its variance at inputx:

dvar � f�x;QLS��Hessian� cs 2 zT�h�uLS��21z

i.e. it also leads to estimate (40).
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5.1.3. Sandwich estimator
The sandwich estimate of the variance of a nonlinear

model output can be derived in various frameworks (a possi-
ble derivation in the frequentist approach is given in Appen-
dix A.3):

dvar � f�x;uLS��sandwich� cs 2zT�h�uLS��21zTz�h�uLS��21z �41�
The sandwich estimator is known to be robust to model
incorrectness, i.e. the considered family of functions is too
small (see, e.g. Efron & Tibshirani, 1993; Ripley, 1995).

5.1.4. Numerical comparison (processes #5 and #6)
Here, we perform a numerical comparison of the three

variance estimates considered above on a very simple
example. We consider a SISO process simulated by a single
“tanh” neuron:

yk
p � tanh�up1

1 up2
xk�1 wk k � 1 to N �42�

with s 2 � 0:01; N � 30: For this comparison, the noise
variances 2 is estimated withs2 in the three (LTE, Hessian,
and sandwich) output variance estimates.

We first simulate a process withup1
� 0; up2

� 1
(process #5). The corresponding results are shown in Fig.
14. The variance reference estimate is computed onM �
10 000 data sets. The LTE approximation (23) of the
variance is almost perfect. The LTE (27), Hessian (40),
and sandwich (41) estimates are comparable: the parameter
estimates being accurate�uLS1

� 3:63 1022
; uLS2

� 0:996�;
the fact that they are overestimated is almost only due to the
noise variance estimates2 � 1:32× 1022. Nevertheless, the
shape of the LTE estimate is closer to the reference estimate
than that of the two others.

We then simulate a process with:up1
� 0; up2

� 5
(process #6). The corresponding results are shown in Fig.
15. The function being steeper, the curvature is larger, and
the LTE approximation (23) of the variance is a little less
accurate. The three estimates are still very similar but, here,
their overestimation is due not only to the noise variance
estimates2 � 1:25× 1022

; but also to the bias of the para-
meter estimates�uLS1

� 3:79 1022
; uLS2

� 6:58�:
The computational cost of the LTE estimate being lower

(is does not necessitate the computation of the Hessian
matrix), there is no reason to prefer one of the two other
estimates. As a matter of fact, since the Hessian depends on
the data set, it is the realization of a random matrix. Thus, in
the maximum likelihood as well as in the Bayesian
approach, it is often recommended to take the expectation
of the Hessian, and to evaluate it at the availableuLS, i.e. to
replace it by the cross-product JacobianzTz (Seber & Wild,
1989): estimates (40) and (41) then reduce to estimate (27).
As mentioned above, the sandwich variance estimator is
known to be robust to model incorrectness, a property
which is not tested with this simple setting, but this is
beyond the scope of this paper.

5.2. Comparison to bootstrap approaches

The bootstrap works by creating many pseudo replicates
of the data set, the bootstrap sets, and reestimating the LS
solution (retraining the neural network) on each bootstrap
set; the variance of the neural model output, and the asso-
ciated CI, are then computed over the trained networks,
typically a hundred (Efron & Tibshirani, 1993). In the
“bootstrap pairs approach” for example, a bootstrap set is
created by sampling with replacement from the data set
(Efron & Tibshirani, 1993). The first advantage of the LS
LTE approach is to require onlyonesuccessful training of
the network on the data set to compute the LTE estimate of
the variance of its output, whereas the bootstrap methods
require a hundred successful trainings of the network on the
different bootstrap sets.

Studies on bootstrap where only one training with a
random initialization of the weights was performed for
each bootstrap set show a pathological overestimation of
the variance. This can be seen in Tibshirani (1996), exam-
ples 2 and 3; but the overestimation of the bootstrap is not
detected in this work because the reference estimate is also
overestimated for the same reasons (one single training per
set). As pointed out by Refenes, Zapranis and Utans (1997),
a way to reduce this overestimation is to start each training
on a bootstrap set with the weights giving the smallest value
of the cost function (18) (that is on the original data set); but
even so, the bootstrap method becomes untractable for large
networks, and/or for multi input processes.

The claim that bootstrap methods are especially efficient for
problems with small data sets (see, e.g. Heskes, 1997) may be
subject to criticism. As an illustration, the variance was esti-
mated for process #2 using the bootstrap pairs approach on
300 bootstrap sets, the network weights being initialized twice
for each training, once with the true ones, and once with those
obtained by training the network on the whole data set. As
shown in Fig. 16, though the size of the data set is not very
small �N � 50�; the bootstrap variance estimate is far away
from the reference estimate. Increasing the number of boot-
strap sets up to 1000 did not improve the variance estimate.

In fact, the bootstrap is especially suited to the estimation
of the variance of estimators defined by a formula, like for
example an estimator of a correlation coefficient (Efron &
Tibshirani, 1993): for each bootstrap set, an estimate is
computed using the formula, and the estimate of the
variance is easily obtained. However the bootstrap is defi-
nitely not the best method if each estimation associated to a
bootstrap set involves an iterative algorithm like the training
of a neural network, which is the case for the construction of
a CI with a neural model. However, if the data set is large
enough, and if the training time is considered unimportant,
the bootstrap pairs approach is a solution in the case of
heteroscedasticity (that isK(W) is not scalar anymore),
whereas the LS LTE approach, as well as the “bootstrap
residuals” approach (Efron & Tibshirani, 1993), are no
longer valid.
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6. Conclusion

We have given a thorough analysis of the LS LTE
approach to the construction of CIs for a nonlinear regres-
sion using neural network models, and put emphasis on its
enlightening geometric interpretation. We have stressed the
underlying assumptions, in particular the fact that the
approval and selection procedures must have led to a parsi-
monious, well-conditioned model containing a good
approximation of the regression. Our whole methodology
(LS parameter estimation, model approval, model selection,
CI construction) has been illustrated on representative
examples, bringing into play simulated processes and an
industrial one.

We have also shown that, as opposed to the computation-
ally intensive bootstrap methods, the LS LTE approach to
the estimation of CIs is both accurate and economical in
terms of computer power, and that it leads to CIs which
are comparable to those obtained by other analytic
approaches under similar assumptions, at a lower computa-
tional cost.

A rigorous assessment of the accuracy of the results
obtained with the LS LTE approach, as well as with any
statistical approach dealing with nonlinear models and
assuming the local planarity of the solution surface, remains
an open problem: it could be enlightened by a specific study
of the curvature of the solution surface of neural networks.
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Appendix A. Estimates of a nonlinear model output
variance

In order to make this paper self-contained, we provide
derivations of the different variance estimates.

A.1. LTE variance estimate in sampling theory

The well-known approximation (Seber & Wild, 1989) we
use in this paper is based on a single expansion, the LTE of
the nonlinear model output for an inputx at the true para-
meter valueup:

f �x; u� < f �x;up�1 j T�u 2 up� �A1�
This expansion leads, for the data set, to

f �x; u� < f �x;up�1 j�u 2 up� �A2�
We now use Eq. (A2) in the expression of the cost-function

J�u� � 1
2 �yp 2 f �x; u��T�yp 2 f �x;u�� �A3�

This leads to

J�u� < 1
2 �yp 2 f �x;up�2 j�u 2 up��T

� �yp 2 f �x; up�2 j�u 2 up��

� 1
2 �yp 2 f �x;up�1 jup�T�yp 2 f �x;up�1 jup�

2uTj T�yp 2 f �x;up�1 jup�1 1
2 u

Tj Tju

An approximate expression of the gradient of the cost-
function follows

2J
2u

< 2j T�yp 2 f �x;up�1 jup�1 j Tju �A4�

Hence an approximate expression of the least-squares
estimate of the parameters

uLS < up 1 �j Tj�21j T�yp 2 f �x;up�� �A5�
And hence the corresponding approximation of the least-
squares estimator (i.e. the random vectorQLS) of the para-
meters (expression (21) in the main text)

QLS < up 1 �j Tj�21j T�Yp 2 f �x; up�� � up 1 �j Tj�21j TW

�A6�
Using the linear Taylor expansion (A1), we obtain an
approximation of the variance of the LS estimator of the
regression for any inputx (expression (23) in the main text):

var� f �x;QLS�� < s 2j T�j Tj�21j �A7�
The derivatives involved inj andj being performed at

the unknownu � up; they may be estimated by the deriva-
tives atu � uLS; that is by replacingj by z and j by z.
Hence the LTE variance estimate presented in the paper:

dvar� f�x;QLS��LTE � s2zT�zTz�21z� rTr
N 2 q

zT�zTz�21z �A8�

A.2. LTE variance estimates in maximum likelihood theory

For comparison, we sum up the results obtained with
maximum likelihood theory (see, e.g. Efron & Tibshirani,
1993; Tibshirani, 1996). We make the same assumptions as
for sampling theory, i.e. that the nonlinear assumed model is
true and thatK�W� � s 2IN (homoscedasticity), and we
consider a gaussian distributed noise. In this case, the log
likelihood function is:

L�u� � 2
1

2s 2 �yp 2 f �x;u��T�yp 2 f �x;u��1 cte �A9�

The parameters that maximize Eq. (A9) are those that mini-
mize Eq. (A3), i.e.uML � uLS:

It can be shown (Seber & Wild, 1989) that the covariance
matrix ofQML is given asymptotically by the inverse of the
Fisher information matrix evaluated atup. The Fisher infor-
mation matrix being the mathematical expectation of the
random matrixM�u� of the second derivatives of the log
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likelihood function, we have

�M�u�� ij � 2
22L

2ui2uj

� 1
s 2

XN
k�1

2f �xk
; u�

2ui

2f �xk
; u�

2uj
1 �Yk

p 2 f �xk
; u�� 2

2f �xk
;u�

2ui2uj

 !
�A10�

The assumed model being true, i.e.E�Yk
p 2 f �xk

;up�� �
E�Wk� � 0; the Fisher information matrix evaluated atup

is given by:

�E�M�up���ij � 2
22L

2ui2uj

�����
u�up

� 1
s 2

XN
k�1

"
2f �xk

;u�
2ui

�����
u�up

2f �xk
; u�

2uj

�����
u�up

#
�A11�

E�M�up�� � 1
s 2 j

Tj

Thus, the covariance matrix ofQML � QLS is approxi-
mately given by:

K�QML � < �E�M�up���21 � s 2�j Tj�21 �A12�

Using the linear Taylor expansion (A1), the maximum like-
lihood approximation of the variance of the output in the
gaussian case is obtained

var� f �x;QLS�� < s 2j T�j Tj�21j �A13�

Hence, the maximum likelihood approximate variance
(A13) is identical to the sampling theory approximate
variance (A7).

Remark. The Hessian matrix h is the value of the random
matrix H with elements:

�H�u�� ij � 22J
2ui2uj

�
XN
k�1

 
2f �xk

;u�
2ui

2f �xk
;u�

2uj
1 �Yk

p 2 f �xk
;u�� 2

2f �xk
;u�

2ui2uj

!
�A14�

Thus

E�M�up�� � 1
s 2 E�H�up�� � 1

s 2 j
Tj �A15�

We can thus estimate the variance with

dvar� f�x;QLS��LTE � cs 2zT�zTz�21z �A16�
In likelihood theory, the variance of the noise is estimated
with

RTR
N
� N 2 q

N
s2 < s2

;

but we will skip over this minor difference; Eq. (A16) is thus
identical to Eq. (A8).

It is also proposed to estimate the Fisher information
matrix E(M(up)) with the “observed information matrix”
m(uLS); this leads to estimate the variance with

dvar� f�x;QLS��Hessian� cs 2zT�h�uLS��21z �A17�
In contrary to estimate (A16), estimate (A17) necessitates
the computation of the Hessian.

A.3. Sandwich variance estimate

Let us propose a derivation of this estimate in the
sampling theory. A second expansion is needed, the LTE
of the gradient at the true parameter valueup:

2J
2u

����
u�uLS

<
2J
2u

����
u�up

1
22J

2u2uT

�����
u�up

�uLS 2 up�

� 2J
2u

����
u�up

1h�up��uLS 2 up� �A18�

whereh(up) is the value of the random Hessian matrix (see
Section A.2) evaluated atup. Hence an approximate expres-
sion of the LS estimate of the parameters

uLS < up 2 �h�up��21 2J
2u

����
u�up

�A19�

In Eq. (A19), we can replace the gradient by its expression

2J
2u

����
u�up

� 2j T�yp 2 f �x; up�� � 2j TW �A20�

Hence the corresponding approximation of the least-squares
estimator (random vectorQLS) of the parameters

QLS < up 1 �H�up��21j TW �A21�
Using the LTE of the model output (A1), we obtain:

f �x;QLS� < f �x;up�1 j T�H�up��21j TW �A22�
Neglecting the random character ofH (H being replaced by
h), the output variance can be approximated by

var� f �x;QLS�� < s 2 j T�h�up��21j Tj �h�up��21j �A23�
This leads to propose the sandwich estimate

dvar� f�x;QLS��sandwich� s2 zT �h�uLS��21zTz�h�uLS��21z
�A24�
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This estimate also necessitates the computation of the
Hessian of the cost-function.

Appendix B. Derivation of an approximate LOO error

The following derivation is inspired from the work of
Antoniadis et al. (1992) and is valid irrespective of whether
or not the assumed model is true. We denote byu�k�LS the LS
estimate on thekth LOO set {xi

; yi
p} i�1to N;i±k: We have the

kth residualr k and thekth LOO errorek:

rk � yk
p 2 f �xk

;uLS�
ek � yk

p 2 f �xk
;u�k�LS�

8<: �B1�

Let us denote byy�k�p the (N 2 1)-vector obtained by deletion
of the kth component of the measured output vectoryp; by
z(k) the�N 2 1; q�matrix obtained by deletion of thekth row
of z, by x(k) the�N 2 1; q�matrix obtained by deletion of the
kth row of x. The LOO estimateu�k�LS minimizes the cost-
function

J�k��u� � 1
2 �y�k�p 2 f �x�k�;u��T�y�k�p 2 f �x�k�;u�� �B2�

We first approximatef �x�k�;u� by its LTE atuLS:

f �x�k�;u� < f �x�k�; uLS�1 z�k��u 2 uLS� �B3�
Hence the approximation ofu�k�LS

u�k�LS < uLS 1 z�k�
T

z�k�
� �21

z�k�
T �y�k�p 2 f �x�k� ; uLS�� �B4�

In the previous expression, we have

z�k�
T�y�k�p 2 f �x�k�;uLS�� � zT�yp 2 f �x;uLS��2 zkrk

� zTr 2 zkrk � 2zkrk
�B5�

because the columns ofz are orthogonal to the residual
vectorr. Using the matrix inversion lemma, we can express
�z�k�T z�k��21 in Eq. (B4) in terms of (zT z)21

z�k�
T

z�k�
� �21� �zTz�21 1

�zTz�21z�k�z�k�
T�zTz�21

1 2 z�k�T �zTz�21z�k�

� �zTz�21 1
�zTz�21z�k�z�k�

T �zTz�21

1 2 �pz�kk

�B6�

wherepz denotes the orthogonal projection matrix on the
range ofz.

Replacing Eqs. (B5) and (B6) into Eq. (B4), we finally
obtain

u�k�LS < uLS 2 �zTz�21zk rk

1 2 �pz�kk
�B7�

Expandingek atuLS and replacing Eq. (B7) into this expan-
sion, we obtain an approximate expression of the LOO error

which is similar to the expression of the linear LOO error
(36)

ek <
rk

1 2 �pz�kk
k � 1 to N �B8�

In practice, the diagonal terms ofpz are computed using
the singular value factorization ofz� uSvT

; whereu is an
orthogonal (N,N) matrix,S is a diagonal (N,q) matrix, andv
is an orthogonal (q,q) matrix (see, Golub & Van Loan,
1983). Then:

�pz�kk �
Xq
i�1

�u�2ki k � 1 to N �B9�

The diagonal elements ofpz that differ from 1 by a threshold
consistent with the computer precision are considered as
equal to 1 (theoretically, the values of the [pz]kk are
comprised between 1/N and 1).
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linéaire et applications. Paris: Economica.

Bates, D. M., & Watts, D. G. (1988).Nonlinear regression analysis and its
applications. New York: Wiley.

Bishop, M. (1995).Neural networks for pattern recognition. Oxford: Clar-
endon Press.

Buntine, W., & Weigend, A. (1994). Computing second derivatives in
feedforward neural networks: a review.IEEE Transactions on Neural
Networks, 5 (3), 480–488.

Draper, N. R., & Smith, H. (1998).Applied regression analysis. New York:
Wiley.

Efron, B., & Tibshirani, R. J. (1993).An introduction to the bootstrap. New
York: Chapman.

Golub, G. H., & Van Loan, C. F. (1983).Matrix computations. Baltimore:
John Hopkins University Press.

Goodwin, G. C., & Payne, R. L. (1977).Dynamic system identification;
experiment design and data analysis. New York: Academic Press.

Hansen, L. K., & Larsen, J. (1993). Linear unlearning for cross validation.
Advances in Computational Mathematics, 5, 286–290.

Heskes, T. (1997). Practical confidence and prediction intervals. In M.
Mozer, M. Jordan & T. Petsche,Advances in neural information
processing systems, vol. 9. Cambridge, MA: MIT Press, 176–182.

MacKay, D. J. C. (1992a). Bayesian interpolation.Neural Computation, 4,
415–447.

MacKay, D. J. C. (1992b). A practical Bayesian framework for backprop
networks.Neural Computation, 4, 448–472.
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