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Abstract
This paper proposes a novel model selection procedure for neural networks based on least squares estimation and

statistical tests. The procedure is performed systematically and automatically in two phases. In the first (bottom-up)

phase, the parameters of candidate neural models with an increasing number of hidden neurons are estimated until they

cannot be approved anymore, i.e. until the neural models become ill-conditioned. In the second (top-down) phase, a

selection among approved candidate models using statistical Fisher tests is performed; the series of tests starts from an

appropriate full model chosen with the help of computationally inexpensive estimates of the performance of the

candidates, and ends with the smallest candidate whose hidden neurons all have a statistically significant contribution to

the estimation of the regression. Large scale simulation experiments illustrate the efficiency and the parsimony of the

proposed procedure, and allow a comparison to other approaches.

1. Introduction
We deal with modeling problems for the case of a non

random (noise free) n-input vector x = x1 x2 � xn
T ,

and a measured scalar output yp which is considered as

the actual value of a random variable1 Yp = Yp  x 

depending on x . We assume that there exists an

unknown function of x, the regression E Yp |  x , such

that for any fixed value xa of x:

Yp |  x a =  E Yp |  x a  + W |  x a (1)

where W |  x a is thus a random variable with zero

expectation2. We consider families of parameterized

functions of the form f x, q , x � � n, q � � q . Such

a family of functions contains the regression if there

exists a value qp of q such that f x, qp  = E Yp | x . In

real-world black-box modeling problems, a family of

functions containing the regression is not known a

1 We distinguish between random variables and their values
(or realizations) by using upper- and lowercase letters, e.g. Yp

k

and yp
k; all vectors are column vectors, and are denoted by

boldface letters, e.g. the n-vectors x a and x k ; non random
matrices are denoted by light lowercase letters.
2 In this work, we thus assume that the relevant inputs have
already been selected, for instance by building a polynomial
model and ordering its regressors according to their relevance
with an orthogonalization procedure [Chen & Billings 1989].

pr ior i , so that candidate families of various

complexities must be put into competition; in this work,

we consider neural networks with one layer of nonlinear

hidden neurons and a linear output neuron. In order to

estimate their parameters, a data set of input-output

pairs x k, yp
k

k=1 to N  must be available, where the

x k = x1
k x2

k � xn
k T 

 are the imposed inputs, and the yp
k

are the corresponding measurements of the process

output. The goal is to select a model approximating the

regression as accurately as possible within the input

domain delimited by the data set and with a minimal

number of hidden neurons, among the candidate models

estimated with the data set. The selection procedure we

propose is performed in two phases which can be

outlined as follows:

a) a bottom-up estimation and approval phase: the

parameters of candidate neural models with an

increasing number of hidden neurons are estimated

until the models, i.e. their Jacobian matrix, become ill-

conditioned.

b) a top-down selection phase: a full model, i.e. a model

that roughly estimates the regression, is chosen among

the approved models according to an estimate of their

performance, and Fisher tests are performed in order to



establish wether all the hidden neurons of this full

model are necessary, i.e. statistically significant.

Section 2 summarizes the practical and statistical

framework of least squares estimation. Section 3

introduces the notion of model approval and its practical

use. Section 4 presents the Fisher tests for the

comparison of nested models, motivates the choice of

an appropriate full model to start the tests from, and

proposes to base this choice on performance estimates

of the approved candidates. Section 5 presents

simulated experiments illustrating the economic

character of the proposed procedure, as well as its

efficiency with respect to other approaches.

2. Least squares estimation
Preliminary to the selection, the parameters of the

candidate models must be estimated. A least squares

estimate qLS of the parameters of a family of functions

f x, q , x � � n, q � � q  minimizes the cost

function3:

J q  = 1
2

 yp
k � f x k, q

2
∑
k=1

N

 = 1
2

   yp � f x, q      2 (2)

where x = x1 x 2 � x N T
  is the (N, n) input matrix and

 f x, q  = f  x1, q � f  xN, q
T 

. The estimate qLS is a

realization of a least squares estimator QLS. Efficient

iterative algorithms are available for the minimization

of cost function (2), for example the Levenberg-

Marquardt algorithm used in this work. It modifies the

parameter vector iteratively according to:

qi = qi-1 + zi-1
T  zi-1 + li Iq

-1
 zi-1

T  yp � f x, qi-1 (3)

where zi-1 denotes the Jacobian matrix available at

iteration i:

zi-1 = 
∂ f x, q

∂ qT q=qi-1

(4)

and where the scalar li > 0 is suitably chosen (see

[Bates & Watts 1988]). All the following results and

3 For a multilayer neural network, due to symmetries in its
architecture (function-preserving transformations are neuron
exchanges, as well as sign flips for odd activation functions
like the hyperbolic tangent), the minimal value of the cost
function can be obtained for several values of the parameter
vector; but as long as an optimal parameter is unique in a
small neighborhood, the following results remain unaffected.

considerations are valid provided an absolute minimum

of the cost function (2) is reached. Thus, in order to

have a high probability to obtain such a minimum,

several minimizations must be made with different

initial conditions, the parameter value corresponding to

the lowest minimum being kept.

The Jacobian matrix evaluated at qLS, simply denoted by

z, plays an important role in the statistical properties of

least squares estimation. As a matter of fact, if the

family of functions contains the regression and if the

noise W is homoscedastic with variance s2:

a) The covariance matrix of the least squares parameter

estimator Q LS  is asymptotically (i.e. as N tends to

infinity) given by s2 z T z
-1

.

b) The variance of the least squares estimator

 f xa, QLS  of the regression for an input xa is

asymptotically given by s2 z a T z T z
-1

 z a, where

z a = 
∂ f xa, q

∂ q q=qLS

.

c) The vector of residuals R = Yp � f x, QLS  is

uncorrelated with QLS and has the asymptotic property
R T R
s2

  � c2(N�q). S2 = R T R
N � q

 is an unbiased

estimator of s2.

d) Hence an estimate of the (1-a)% confidence interval

for the regression for any input xa of interest

 f xa, qLS  ± g 1�a/2  s z a T z T z 
-1

 z a , where g

is the inverse of the gaussian cumulative distribution.

Many approaches encountered in the neural literature

perform the parameter estimation by minimizing a

regularized cost function, or by stopping the training

during the minimization of cost function (2) �early�, i.e.

before its minimum is reached, considering the mean

square error on a independent set. Unfortunately, the

regularization terms are often arbitrarily chosen, and

early stopping lacks theoretical support (see [Anders &

Korn 1999] for a discussion of this issue). We therefore

recommend the classic least squares approach, which

allows a sound statistical approach of the selection

problem, the estimation of confidence intervals, etc.

3. Model approval
Selection is the process by which the best model is

chosen; approval is a preliminary step to selection



which consists in rejecting unusable candidates. As a

matter of fact, a candidate model may be unusable for

the following reasons:

a) it overfits, i.e. it is unnecessarily complex given the

data set;

b) it is numerically so ill-conditioned that relevant

quantities such as confidence intervals (see [Rivals &

Personnaz, to appear]) or approximate leave-one-out

scores (see section 4.1) cannot be reliably computed;

c) some of its parameters are too large, i.e. may require

too large a precision.

Unusable models in the above sense cannot be

approved4. Luckily, these three features of a neural

model are highly linked, and can be characterized with

the conditioning of its Jacobian matrix z. Since the

elements of z represent the sensibility of the model

output with respect to the parameters, the ill-

conditioning of z is naturally the symptom that some

parameters are useless, i.e. that the model is too

complex. A typical situation is the saturation of a �tanh�

hidden neuron, a situation which generates in the matrix

z a column of +1 or �1 that corresponds to the parameter

between the output of the saturated hidden neuron and

the linear output neuron, and columns of zeros that

correspond to the parameters between the network

inputs and the saturated hidden neuron5 (see [Rivals &

Personnaz 1998]). Further, the computation of

confidence intervals involves that of the inverse of z T z,

thus necessitating that z itself be well-conditioned. This

will also be necessary to compute approximate leave-

one-out scores (see section 4.1). Finally, it is also clear

that large parameters usually lead to the ill-conditioning

of z, large values of parameters between the inputs and a

hidden neuron driving this neuron into saturation.

In practice, we propose to perform a singular value

factorization of z, and to compute its condition number

4 The term �validation� would also be appropriate, but it is
unfortunately too tightly connected to cross-validation, and
thus to performance estimation.
5 Such a situation might also correspond to a relative
minimum; to check the conditioning of z thus also helps to
discard neural networks trapped in relative minima, and leads
to retrain the neural candidate with different initial conditions.

k z , that is the ratio of its largest to its smallest

singular value, see for example [Golub & Van Loan

1983]. The matrix z can be considered as very ill-

conditioned when k z  reaches the inverse of the

computer precision, which is of the order of 10-16. Since

k z T z  = k z 2, only the neural candidates whose

condition number is not much larger than 108 will be

approved6. Usually, k z  increases regularly with the

number of hidden neurons, except for very small

networks in the case of small and noisy data sets, where

their neurons tend to saturate.

4. Model selection
Neural networks with one layer of hidden neurons and a

linear output neuron are relatively easy to compare

because they are nested models. We briefly recall the

Fisher tests to select the simplest nested model needed

to estimate the regression adequately, given the data set

(see for example [Bates & Watts 1988]). An important

issue is how to choose the most complex model where

to start the tests from, the �full model�, since the most

complex approved model may give a bad estimate of the

noise variance. We propose an economic choice of the

full model based on approximate leave-one-out scores

of the approved candidate models.

4.1. Choice of a full model

The full model must satisfy two conditions:

a) according to the assumptions needed to perform

statistical tests, the family of functions defined by its

architecture should be complex enough to contain a

good approximation of the regression in the input

domain delimited by the data set: there should be no

�lack of fit� of the regression;

b) the full model should not be too complex, in order to

6 Previous studies of the ill-conditioning of neural networks
deal with their training rather than with their approval, like in
[Zhou & Si 1998] where an algorithm avoiding the Jacobian
rank deficiency is presented, or in [Saarinen et al. 1993] where
the Hessian rank deficiency is studied during training. In our
view, rank deficiency is not relevant during the training since,
with a Levenberg algorithm, the matrix to be �inverted� is
made well-conditioned by the addition of a scalar matrix l Iq

to the cross-product Jacobian z T z.



avoid a bad estimation of the variance through 
rq

T rq

N � q
,

where rq denotes the residuals of a model with q

parameters.

In order to judge if these conditions are fulfilled, a

performance estimate of the approved candidate is

needed. We propose to use their leave-one-out scores,

more precisely an economic approximation of them.
In the case of a linear model, the k-th leave-one-out

error ek can be directly derived from the corresponding

residual r k [Antoniadis et al. 1992] [Efron & Tibshirani

1993]:

ek =  r k

1 � px kk

   k=1 to N (5)

where px = x xT x
-1

 xT  denotes the (N, N) orthogonal

projection matrix on the range of the (N, n) input matrix

x , and assuming that px kk < 1. In the case of a

nonlinear model, we have shown [Rivals & Personnaz,

in press] that a useful approximation of the k-th leave-

one-out error is:

ek � r k

1 � pz kk

  k=1 to N (6)

where pz = z z T z
-1

 zT denotes the (N, N) orthogonal

projection matrix on the range of the (N, q) Jacobian

matrix, and assuming that pz kk < 1. Hence the

approximate leave-one-out score:

ALOOS = 1
N

 ek 2
∑
k=1

N

(7)

The ALOOS can be reliably computed only if the model

is well-conditioned; if not, some of the diagonal terms

pz kk of the projection matrix may be outside their

theoretical bounds [1/N; 1]. Another performance

measure could be chosen (a 10-fold cross validation

score, a mean square error on an independent set, etc.):

the advantage of the ALOOS  (7) is its economic

computation, on the whole data set.

In [Rivals & Personnaz 1999], we have shown that the

leave-one-out score alone is often not sufficient to

perform a good selection. Here, we propose to use the

ALOOS as a tool to perform the tests appropriately, i.e.

to choose the full model as the most complex approved

model before the ALOOS starts to increase significantly.

The full model can then be considered as a good

approximation of the regression if the ratio of its

ALOOS  to its mean square training error 2
N

 J qLS

(MSTE) is of the order of one7.

4.2. Statistical tests

Let us suppose that the family of functions defined by

the architecture of a given model with q parameters

contains the regression; we call this model the

unrestricted one. We are interested in deciding whether

the family of functions defined by the architecture of a

restricted model, i.e. a submodel with q� < q parameter,

also contains the regression. This decision problem

leads to define the null hypothesis H0, i.e. the

hypothesis that the family of functions defined by the

architecture of the restricted model contains the

regression, and to build a statistical Fisher test. When

H0 is true, the following ratio b is the value of a random

variable approximately Fisher distributed, with q � q'

and N � q  degrees of freedom:

b =  

rq'
T rq' � rq

T rq

q � q'

rq
T rq

N � q

(8)

where rq and rq' denote the residuals of the unrestricted

model (with q parameters) and those of the restricted

one (with q� parameters)8. The decision to reject H0

with a risk a% of rejecting it while it is true will be

taken when b > f N � q
q � q '

 1�a , where  f N � q
q � q'

 is the

inverse of the Fisher cumulative distribution. When

b ≤ f N � q
q � q '

 1�a , nothing in the data set allows to say

that the family of functions defined by the architecture

of the restricted model does not contain the regression.

In practice, a sequence of tests is performed starting

with the full model as unrestricted model, the restricted

model being then taken as new unrestricted model

(qnew = q�old) as long as the null hypothesis is not

rejected. It is naturally interesting to use these tests to

7 When the data set includes replications, it advantageous to
perform a test for lack of fit [Seber & Wild 1989].
8  Generally, N�q is large (>100), so that the ratio:

b' = rq'
T rq' � rq

T rq

rq
T rq

 N � q  = b q � q'

is the value of a random variable approximately c2 N�q
distributed.



decide whether a restricted network with one or several

hidden neurons less than the full model still gives a

good approximation of the regression.

Each of these Fisher tests thus involves the estimation

of the parameters of both the unrestricted model and the

restricted one. It is also possible to perform tests (the

Wald tests [Anders & Korn 1999] or more generally the

so-called tests of �linear hypotheses� [Seber & Wild

1989]) involving only the unrestricted model, by testing

whether some of its parameters are zero or not. Whereas

in the case of linear models, the two tests are equivalent,

they are not in the case of neural networks due to the

interchangeability of their hidden neurons.

5. Illustrative examples
We consider three different processes. Process 1 is a

single input process simulated with:

E Yp|  x  =  sinc 10 (x + 1) (9)

where �sinc� denotes the cardinal sine function, the

input values are drawn from an uniform distribution in

[�1; 1], and the noise values from a gaussian

distribution with K W  = 2 10-3 IN .

Processes 2 and 3 are taken from [Anders & Korn 1999]

in order to allow numerical comparisons of our method

to those described in this very interesting paper. Process

2 is a three input process simulated with:

E Yp|  x  = 1 +  tanh 2 x1 � x2 + 3 x3  +  tanh x2 � x1 (10)

and process 3 is a two input process simulated with:

E Yp|  x  = � 0.5 + 0.2 x1
2 � 0.1  exp x2 (11)

whose input values are drawn from a gaussian

distribution with unit variance, and the noise values

from a gaussian distribution whose standard deviation

equals 20% of the unconditional standard deviation of

the output, i.e. K W  = 0.2 IN for process 2 and

K W  = 5 10-3 IN  for process 3.

We build 1000 data sets of size N with different values

of the noise (the inputs remaining unchanged); a large

separate set of 500 samples is used for performance

estimation. The neural models are trained with the

Levenberg-Marquardt algorithm, each of them being

trained q (the number of its parameters) times starting

from different random initial parameters values, in order

to maximize the probability to reach a global minimum.

The bottom-up estimation and approval phase is stopped

when either the condition number of z reaches 108, or

one of the diagonal terms pz kk of the projection matrix

needed for the computation of the ALOOS is outside the

theoretical bounds [1/N; 1]. The full model is chosen as

the largest approved model before the ALOOS starts to

increase, and the top-down test phase is performed at

the 5% risk level. In each case, i.e. a given process and

a fixed data set size N, we give the average values on

the 1000 data sets of:

a) the number of hidden units of the full model hfull;

b) the number of hidden units of the selected model hsel;

c) the mean square training error MSTE of the selected

model;

d) the approximate leave-one-out score ALOOS of the

selected model;

e) the ratio of the ALOOS of the selected model to its

MSTE , which we expect to indicate whether the

selected model gives a good estimate of the regression:

p = ALOOS
MSTE

(12)

f) the mean square performance error MSPE, i.e. the

mean square error obtained on the large separate set;

g) the relative difference in MSPE between the true

model, i.e. the model whose output is the regression,

and the selected model:

r = MSPE � MSPEtrue model

MSPEtrue model

(13)

This ratio9 is used in order to perform comparisons

with the results of [Anders & Korn 1999].

The results obtained for the modeling of process 1 are

shown in Table 1. For large N, the procedure selects an

average number of hidden neurons hsel of 4.1 with an

average MSPE (MSPE) equal to the noise variance,

performance which indicates that this selection is

adequate. Both MSPE and hsel remain almost constant

until N becomes too small with respect to the number of

parameters needed for the 4 hidden units network

(q = 13): hsel then drops to 3.1 for N = 50. Nevertheless,

9 Note that r  carries the same information as the MSPE
together with the noise variance s2. Note also that, when
r  = 100%, the MSPE is only twice as large as s2, a value
which is quite satisfactory in the case of a small data set and a
complex regression.



the performance is not bad (MSPE equals twice the

noise variance), and the value of the ratio p, on the

average equal to 1.63, helps the designer in individual

cases to diagnose that the data set size N is too small to

achieve a perfect modeling. Finally, we note that,

whatever N , the full model is frequently selected

(hfull ≈  hsel).

N 50 100 200 500

hfull 3.2 4.2 4.3 4.3

hsel 3.1 4.1 4.2 4.2

MSTE 1.94 10-3 1.77 10-3 1.86 10-3 1.94 10-3

ALOOS 3.08 10-3 2.39 10-3 2.15 10-3 2.05 10-3

p 1.64 1.35 1.15 1.06

MSPE 4.40 10-3 2.56 10-3 2.28 10-3 2.14 10-3

r 108.4% 15.9% 8.2% 3.1%

Table 1. Results10 for process 1 (s2 = 2 10-3).

The results obtained for the modeling of process 2 are

shown in Table 2. The family of the neural networks

with two hidden neurons contains the regression. It is

interesting to note that hsel almost does not vary with the

data set size N: the model with the right architecture

being almost always chosen. Like for process 1, we note

that the preselection performed on the basis of the

conditioning number of z and of the ALOOS almost

always leads to the right model. Finally, the fact that a

parameter from the input x3 to one of the hidden

neurons is not necessary does not lead to the ill-

conditioning of 2 hidden units models with all their

connections. The results obtained on this example can

be compared to those presented in [Anders & Korn

1999], which studies how hypothesis tests, information

criteria and cross-validation can guide model selection;

it concludes that approaches based on statistical tests

lead to the best results. These approaches proceed by

constructing models with an increasing number of

hidden neurons, until an additional one is shown to be

statistically not significant; Wald tests are then

10 In real life, the values of the MSPE and of r are not
available, hence the gray background used for them in the
result tables.

performed on the input connections. The best method

described in [Anders & Korn 1999] achieves a

performance which is similar to ours (r = 3.3%), with

roughly the same average number of hidden units of the

selected model, in the case N  = 500 (smaller training

sets are not considered in their paper).

N 50 100 200 500

hfull 2.1 2.2 2.2 2.2

hsel 2.0 2.1 2.1 2.2

MSTE 1.59 10-1 1.73 10-1 1.86 10-1 1.94 10-1

ALOOS 2.69 10-1 2.23 10-1 2.10 10-1 2.03 10-1

p 1.75 1.30 1.10 1.05

MSPE 2.89 10-1 2.23 10-1 2.01 10-1 1.92 10-1

r 44.2% 18.3% 8.4% 3.1%

Table 2. Results for process 2 (s2 = 2 10-1).

The results obtained for the modeling of process 3 are

shown in Table 3. The regression being quite complex

(see the regression surface in [Anders & Korn 1999]),

the performance deteriorates when the size of the

training set becomes too small. Again, the average

numbers of hidden neurons of the full model and of the

selected model increase as the data set size N increases,

and the tests slightly reduce the size of the selected

model as compared to that of the full model. In the case

N = 500, the best statistical selection method described

in [Anders & Korn 1999] obtains a poor performance

(r = 30.9%) as compared to ours (r = 2.5%), but with

roughly the same average number of hidden neurons

(3.2). This difference may be due to the fact that their

training algorithm is less efficient, or that their tests

have lead to the suppression of too many connections

from the inputs to the hidden neurons: on the average,

7.3 such connections remain in their selected network,

whereas a completely connected 3 hidden units model

possesses 9, and a 4 hidden units model possesses 11.

They also report that 10-fold cross-validation achieves

r = 53.6% with 3.7 hidden units on the average (again

with N = 500).



N 100 200 500

hfull 3.2 3.3 3.4

hsel 3.1 3.2 3.3

MSTE 4.48 10-3 4.64 10-3 4.82 10-3

ALOOS 7.20 10-3 5.74 10-3 4.15 10-3

p 1.6 1.2 1.1

MSPE 1.38 10-2 5.79 10-3 4.41 10-3

r 178% 11.0% 2.5%

Table 3. Results for Process 3 (s2 = 5 10-3).

We can now make two important statements:

a) the full model is always already quite small, i.e. the

approval based on the conditioning of z together with

the rule involving the A L O O S lead to a good

preliminary selection; unnecessarily complex models

are not taken into account, as opposed to pruning

approaches, thus sparing a lot of computation time.

b) the ratio p  = ALOOS/MSTE gives indeed a reliable

indication of whether the selected model gives a good

estimate of the regression, and thus if it makes sense to

compute confidence intervals on its basis.

6. Conclusion
We have presented an economic and efficient automatic

procedure for determining the optimal number of hidden

neurons of a neural model, procedure which is

performed in two phases. The first one, based on a

bottom-up strategy, leads to the choice of a model, the

full model, which is not too complex in the sense that it

already gives a correct approximation of the regression

and that its Jacobian matrix is sufficiently well-

conditioned. The second phase, based on a top-down

strategy, uses statistical Fisher tests to further refine the

selection, that is to further reduce the complexity of the

model. The whole procedure is economic since it only

necessitates the computation of the condition number

and of the approximate leave-one-out scores of the

neural candidates in the bottom-up phase, and that of

the Fisher ratios in the top-down phase. Finally, our

procedure proves to be efficient as compared to many

other approaches proposed in the literature.
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