UNDERSAMPLING FOR THE TRAINING OF FEEDBACK NEURAL
NETWORKS ON LARGE SEQUENCES; APPLICATION TO THE
MODELING OF AN INDUCTION MACHINE

L. Constant *, B. Dagues *, 1. Rivals **, L. Personnaz **

(*) Laboratoire d'Electrotechnique et d'Electronique Industrielle
UMR CNRS n°5828
2, rue Camichel, BP 7122, 31071 TOULOUSE Cedex 7, FRANCE
E-mail: Constant@]leei.enseeiht.fr

(**) Laboratoire d'Electronique de I'Ecole Supérieure de Physique et de Chimie Industrielles
UPR CNRS n°9081 (NETS)
10, rue Vauquelin, 75231 PARIS Cedex 05, FRANCE
E-mail: Isabelle.Rivals@espci.fr

ABSTRACT
This paper proposes an economic method for the
nonlinear modeling of dynamic processes using
feedback neural networks, by undersampling the
training sequences. The undersampling (i) allows a
better exploration of the operating range of the process
for a given size of the training sequences, and (ii) it
speeds up the training of the feedback networks. This
method is successfully applied to the training of a
neural model of the electromagnetic part of an
induction machine, whose sampling period must be
small enough to take fast variations of the input voltage
into account, i.e. smaller than 1 us.

1. INTRODUCTION
We are interested in the real-time emulation of systems
consisting of a static converter, an induction machine,
and of the associated sensors [1]. Implementations of
classic induction machine models are computationally
intensive, which prevents real-time processing. The
ability to parsimoniously approximate nonlinear
mappings, as well as the possibility of parallel
computing, make neural networks efficient in terms of
accuracy and computation time, and make their use
interesting in this context. This paper thus presents the
neural modeling [2] [3] of the electromagnetic part of
an induction machine [4] [5] [6]. A difficulty of this
type of dynamic modeling is the design of training
sequences exploring the entire range of operation of the
induction machine. Moreover, even if the dynamics of
the induction machine itself does not necessitate a very
high sampling frequency, the latter should be high
enough to take fast variations of the input voltage into
account, constraint which leads to huge training
sequences. Under these conditions, the training is not
easily achievable from the point of view both of its
duration and of its success, due to local minima. To
overcome these problems, we propose (i) to
undersample the training sequences, and (ii) to perform
an adequate modification of the parameters obtained

after training so that the feedback neural model finally
operates at the desired, higher, sampling frequency.
Thanks to this method, it is possible for a given number
of samples to explore a larger portion of the range of
operation of the process, i.e. to make the training
sequences more informative, and to perform a more
efficient training.

2. NEURAL MODELING OF AN
INDUCTION MACHINE
This section introduces the process (simulated
induction machine) to be modeled, the neural model
architecture, and the training procedure used to
estimate the network parameters.

2.1. Reference model

The simulated process is based on the classic two-
phase model of an induction machine with a three-
phase stator, p pairs of poles and a squirrel-cage rotor.
The two-phase model in the reference frame (o,)
fixed on the stator consists of:

— asystem of differential equations for the fluxes:

%:—Rs 1 Osa + R -0 Ora + Vsa

dt oLy oM
d¢sﬁ =_R, 1 ¢sﬂ + Ry l-o ¢r[3 + Vsﬁ

dt o Ls oM M
e g, 04 R L hu—p Qo

dt oM oL
b g, 10 R L st Q

dt oM oL

— a relation between the fluxes and the electro-
magnetic torque:

1-o
Ten=p ~— (s $ra— bsa 9) (2
oM
— relations between the fluxes and the stator currents:
f[sa =1 ¢sa - -0 ¢r(x
oL oM (3)
1-o
[Sﬁ =_1 ¢Sﬂ - ¢r[3
\l oL oM

A discrete-time model is obtained by discretizing the
above continuous-time model using the Runge-Kutta
method of order 4. This discrete-time model, termed
“reference model”, is used to generate training and test
sequences for the neural model.

2.2. Neural model architecture

The neural network architecture is based on the
equations of the two-phase model, and consists thus of
two distinct parts. The first one, a feedback (dynamic)
input-output neural network shown in Fig. 1,
corresponds to the system of differential equations for
the fluxes (1). Its state outputs are the 4 fluxes, which
are computed according to the stator voltages, the
mechanical speed, and the fluxes at the previous time
step. According to the reference model, the 2 stator
fluxes are estimated by two linear functions, and the 2
rotor fluxes are estimated by 2 nonlinear subnetworks.
These subnetworks have only the input variables
involved in the corresponding differential equations, a
layer of 4 hidden neurons with hyperbolic tangent
activation function, and a linear output neuron. The
second part of the neural model is a feedforward
(static) neural network, which implements relations (2)
and (3): it computes the stator currents and the
electromagnetic torque according to the fluxes [4]. The
training of the feedforward network being independent
from the sampling period, we focus here on the training
of the feedback network.

2.3. Training on undersampled sequences

A very small sampling period is not necessary to obtain
an accurate discretization of the continuous-time model
of the electromagnetic part of the induction machine,
but at the end, the induction machine model must be
associated to a static converter model. Phenomena such
as the dead-times of the converter must thus be taken
into account, so that the working sampling period must
be at most of 1 us. The design of an appropriate
training sequence mainly necessitates the determination
of the domain defined by the ranges of mechanical
speed, flux amplitude, and load torque that must be
explored in the training sequence so that the network is
able to reproduce unlearned modes of operation. In [7],
such a training sequence has been designed. The latter
being extremely large (it consists of hundreds of
thousands of samples), it is undersampled here at 10 us
for the training of the neural model.

The training is performed in an undirected (parallel)
fashion using an iterative non recursive quasi-
Newtonian algorithm; the gradient of the cost-function
is computed by backpropagation [2] [3]. Section 3
presents how the network parameters values obtained
after training can be modified so that the network
operates at the desired sampling period, i.e. 1 us.

3. SAMPLING PERIOD MODIFICATION
We suppose that a SISO first-order nonlinear discrete-
time predictive model of an unknown continuous-time
process has been obtained using measurements at a
sampling period T

w1 = ay(k) + b uk) + ¢ f (Wb), uh)) (4)
where f is a nonlinear function. The problem is to
derive from (4) a discrete-time model working at a
smaller sampling period 7":
y(k+1)=a' y(k) + b u(k) + ¢' £ (y(k), u(k)) (5
For this purpose, we propose to consider that the
discrete-time model (4) is a discretization of the
following fictitious continuous-time model (6) with one
of the usual discretization rules:
‘;l= Fou)=acy+beutce f(nu) (6)
t
Subsection 3.1 determines which discretization rules

allow the computation of @', b', ¢' froma, b, c.

3.1. Possible discretization rules

We search for the discretization rules on which it is

possible to base a transformation of the discrete-time

model (4) into the discrete-time model (5).

a) Euler’s backward rule

The approximate discretization of (6) using Euler’s

backward rule is obtained by assuming that dy/dt is

constant between k7 and (k+1)T, and that it is equal to

F (kT). Hence the model for a sampling period 7:

[ye(ht1) = (1+acT)ye(k) + beTu(k) + cc T f (ve(k), u(k)) 7
=aye(k) + b u(k) + ¢ fye(k), u(k))

Performing Euler at 7', and eliminating a., b., c. with

(7), one obtains:

fa‘=1+ ' (-1
T

p=T"p (8)

T
c=T"¢
T

b) Euler’s forward rule

The discretization using Euler’s forward rule is
obtained by assuming that dy/dt is constant between
kT and (k+1)T, and equal to F ((k+1)T). Because of
the non-linearity f'in F, an explicit difference equation
is generally impossible to derive (for instance if f is
implemented by nonlinear neurons). This rule is thus
not suited to our problem.

¢) Tustin’s (trapezoidal) rule

For the same reason as for Euler’s forward rule, this
rule is also not suited to our problem.

d) Other rules

For a linear model, there exist many other rules to
derive a discrete-time transfer function [8], in particular
those leading to a behavior of the discrete-time system
that is identical to that of the continuous-time system at
the sampling instants for a given type of input
(impulse, step, ramp, sinusoid, etc.). Unfortunately,

there is no general rule for exact matching even for
specific inputs in the nonlinear case.

To conclude, the only rule that can generically be used
for our problem is Euler’s backward rule.

3.2. Application to feedback neural networks

For simplicity, we consider a first-order feedback
network with Ne external inputs (possibly including a
constant unit input), a layer of Nk nonlinear neurons,
and a linear state output with direct connections to the
inputs (see Fig. 2). We denote the external inputs at
time k by {x,(k)} for i=1 to Ne, and the outputs of the
hidden neurons by {xwe:i(k)} for i=1to Nh. The
elements of the parameter vector 6 corresponding to
all the connections to the output are numbered as in

Fig. 2. The network behavior is described by:
Ne+Nh

y (kt1) = Onernn1 y(k) + E 0; xi(k))

=
We look for the parameters 6' of the output neuron of
the network working at a smaller sampling period 7''.

This network behavior is by definition described by:
Ne+Nh

y (1) = 0N y(b) + Y 0'ixik) (10)
=1

As shown in the previous section, Euler’s backward
rule can be used to derive the parameters ' :

0'Ne+np1 =1 + % (Onernni —1) (11)
0= T? 6; fori=1 to Ne+Nh (12)

The elements of Aand 6'corresponding to the
connections from the inputs to the hidden neurons are
identical.

This transformation is easily generalized to the case of
a state-space neural network [3] with several states: for
each state output neuron, the parameter of the
connection from the corresponding state input is
modified according to (11), and all the others according
to (12).

4. TEST OF THE NEURAL MODEL
A neural model working at 1 us is obtained by
performing the parameter transformations (11) (12) for
the 4 state outputs ¢sa, @sp, Pra, ¢rp, of the neural
model of the induction machine electromagnetic part
trained at 10 us as described in section 2.
A test sequence, shown in Fig. 3, is used to assess the
accuracy of the neural model predictions. This
sequence consists of a machine start-up, i.e. involves
operating conditions which are not explored by the
training sequences. The error of the neural networks
computing ¢so and ¢« for example is less than 0.5
percent of the corresponding reference fluxes ¢sq ref
and ¢rq ref, as shown on Fig. 4. The networks operating
at the reduced sampling period (7' =1 us) are even
more accurate than those operating at 7= 10 us .
An increase of accuracy would be guaranteed if the
neural model had been perfectly trained on sequences

obtained by Euler’s backward discretization. If this is
not the case (i.e. if the sequences are obtained with
another discretization method, or more generally if they
are measured on a real process), an improved accuracy
can still be expected since the fast variations of the
inputs are better taken into account at a smaller
sampling period. This explains the better performance
observed for the neural networks operating at the small
sampling period 7' =1 us .

5. CONCLUSIONS

This paper demonstrates that it is possible to design a
neural model of the induction machine electromagnetic
part dedicated to a real-time operation with a sampling
period of 1 ws. The difficulty of carrying out the
training of a feedback neural model with such a small
sampling period has led us to develop a general method
of undersampling, which both facilitates the training
and makes it more efficient by allowing a thorough
exploration of the operating range of the process. This
method will be further tested on the training of a neural
model of the induction machine taking magnetic
saturation phenomena into account.

6. REFERENCES

[11 S. Ben Saoud, F. Chouzal, B. Dagues, J. C. Hapiot,
“Emulator of static converters/electrical machines;
application to the test of new control algorithms”,
EPE’95, Sept. 1995, Sevilla, Spain.

[2] O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus,
“Neural networks and nonlinear adaptive filtering:
unifying concepts and new algorithms”, Neural
Computation 5, 1993, pp. 165-199.

[3] I Rivals, L. Personnaz, “Black-box modeling with state-
space neural networks”, in Neural Adaptive Control
Technology, R. Zbikowski and K. J. Hunt eds, 1996,
World Scientific, pp. 237-264.

[4] L. Constant, P. Lagarrigues, B. Dagues, 1. Rivals, L.
Personnaz, “Modeling of electromechanical systems
using feedback neural networks”, in Computational
Intelligence and Applications, P.S. Szczepaniak eds,
1999, Physica-Verlag, pp. 137-143.

[5] L. Constant, P.-E. Lagarrigues, B. Dagues, 1. Rivals, L.
Personnaz, “Neural modeling of an induction machine”,
System Modeling and Control, Apr. 1998, Zakopane,
Poland.

[6] J. F. Martins, A. J. Pires, J. A. Dente, “Automatic
input/output modeling of a squirrel-cage induction motor
drive system using neural network”, EPE’97, Sept. 1997,
Trondheim, Norway.

[71 L. Constant, R. Ruelland, B. Dagues, 1. Rivals, L.
Personnaz, “Identification and validation of a neural
network estimating the fluxes of an induction machine”,
Electrimacs 99, sept. 1999, Lisbon, Portugal.

[81 R. H. Middleton, G. C. Goodwin, Digital control and
estimation; a unified approach. Prentice-Hall
International, London, 1990.

A ¢sa(k+1) i ¢r(x(k+1) A ¢Iﬁ(k+1) i ¢s[5(k+1)

@ @ @ linear neuron

hidden neuron with

OO QO OOOQ . hyperbolic tangent
= : = / activation function
T:| - The constant inputs (biases)
¢sa‘(k) Via(k) q)r?(k) QA(k) q)rﬁ‘(k) VSBA(k) ¢iﬁ(k) are not shown.

Fig. 1: Feedback neural model of the induction machine electromagnetic part.

Ay

b ONeNh ONerNh+1
W 5 XNe+Nh(K)
PN R _1
S |
= .)
I:I State input |

[] Ne external inputs

X1(k) XNe(k) y(k)
Fig. 2: Feedback neural network of order 1.

A

Vsa (V)
Vsp (V)
Q (rd/s) —

04 105)

(1) soref (Wb)
(1)ra ref (Wb)

0 0.1 0.2 0.3 0.4 t(s)
Fig. 3: Inputs (Vsa, Vg, £2) and outputs (¢ysa rer, Prarer) of the test sequence.

0.004[
i | abs(dsarer/200) (Wb)
0.002 | 4 abs(@sarer—Psannious) (Wh)
0 ;\ i abs(q)saref_q)saNNlus) (Wb)
0
OO0 ot TR AT abs (grner/200) (Wh)
0.002 [; S ik . 55 gl A0 ; abs (Pra ref—PranNiops) (W)
Og . ¥] » abs(q)raref_q)raNNlus) (Wb) E—
0 01 0.2 03 04 1(s)

Fig. 4: Errors of the neural networks working at 7= 10 usand 7'=1 us.

