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Abstract : In the frame of a study on real-time emulators
of electromechanical systems, we have built a neural model
of an induction machine. An original methodology is used to
design the neural network architecture, as well as training
sequences allowing a proper identification of the induction
machine behavior in its whole operating range. In the same
spirit, exhaustive test sequences are built in order to obtain
an accurate estimate of the neural model performance.

1.- INTRODUCTION

The present paper deals with the modeling of
electromechanical systems using neural networks. In the
frame of a study on emulators of {static converters /
electrical machines / sensors} associations [2], our aim is to
simulate complex electromechanical systems in real-time.
The ability to parsimoniously approximate nonlinear
mappings [3], as well as the possibility of parallel
computing, make neural networks efficient in terms both of
accuracy and computation time. The use of feedback
(dynamic) neural networks [4] [5] thus opens up new
horizons to the nonlinear modeling of complex dynamic
nonlinear systems. The design of a first neural model of the
induction machine has been presented in the previous papers
[6] [7]. This neural model consists of two parts. The first part
is a feeback neural network whose state outputs are the stator
and rotor fluxes, and whose inputs are the stator voltages and
the mechanical rotor speed. The second part is a feedforward
(static) network, which computes the stator currents and the
electromagnetic torque from the fluxes. This neural model
estimates the output variables of interest with a global error
of 3% on a machine start-up test sequence. This relatively
large error is mainly due to the inaccuracy of the feedback

network. This paper thus presents a new methodology for the
design of training sequences allowing a better identification
of the feedback network in the whole operating range of the
fluxes [1]. In order to take the fast dynamics of the converter
into account, a very small sampling period must be used (at
most T=10 µs). A major difficulty encountered for this
design was hence the necessity to avoid too large sequences
for the exploration of the whole state space.

2.- NEURAL MODEL ARCHITECTURE

The neural model architecture is shown in Fig. 1. This
architecture is directly derived from the analytic relations (1)
of a two-phase model in the reference frame (α, β) fixed on
the stator. All the training and test sequences are generated
using the two-phase model, which will be termed "reference
model".
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In the architecture of the neural network, a hidden
neuron is linked with only one output neuron, in this way
each flux is computed with an autonomous subnetwork.
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Fig. 1: The feedback neural network for the estimation of the fluxes.

According to the reference model, the two stator fluxes
are estimated by two linear functions (linear neuron); the two
rotor fluxes are estimated by two non linear subnetworks.
These subnetworks have only the inputs variables involved in
the corresponding differential equations, one layer of 4
hidden neurons, and a linear output neuron (Fig. 1). The
inputs intervening in the non-linearity are linked to the
hidden neuron (the non-linearity is the multiplication
between the rotor flux components and the speed (1) ).

3.- DESIGN OF THE TRAINING
SEQUENCES

The estimation of the parameters of the linear
subnetworks being straightforward, we have focused on the
design of excitating training sequences for the nonlinear
subnetworks, i. e. those estimating the rotor fluxes. To
facilitate the training, all the variables (voltage, flux, speed)
are set to the same scale (Fig. 2, Fig. 4, Fig. 6, Fig. 7). Our
goal was to explore the operating space within the shortest
possible time, in order to facilitate the training, the latter is
achieved using  a quasi-newtonian algorithm, the gradient of
the cost-function being computed with the backpropagation
algorithm [4] [5]. We constrained the training sequence to
have a duration of at most 1s, i.e. 100 000 time periods
(T=10 µs).

 3.1.- Steady-state training and testing
at nominal flux

The mechanical dynamics being extremely slow as
compared to the electromagnetical ones,  it seems justified to
train the neural network on steady-state regimes only, a
steady-state corresponding to constant values of the rotor
speed and of the electromagnetic torque. We first tested this
assumption at nominal flux, the motor working off load and
the nominal flux module being maintained by a vector
control. The problem was then to determine how many
different rotor speed values were necessary to describe the
operating range. The nominal rotor speed is denoted by
Ω_nom. We built three different training sequences:
− SEQUENCE 1 consists of 2 steady-states at 0.2Ω_nom

and 1.8Ω_nom;
− SEQUENCE 2 consists of 3 steady-states at 0.2Ω_nom,

Ω_nom, and 1.8Ω_nom;
− SEQUENCE 3 consists of 5 steady-states at 0.2Ωn_nom,

0.6Ω_nom, Ω_nom, 1.4Ω_nom and 1.8Ω_nom.
The sequence 2 is shown on Fig. 2.
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Fig. 2: Example of training sequence: SEQUENCE 2

We performed 3 trainings on the 3 different training
sequences, thus obtaining 3 different neural networks, whose
performances where evaluated on the whole range of the
rotor speed (0Ω_nom-2Ω_nom), i.e. on steady-states which
were not learnt. As a matter of fact, the performances are
very similar, and entirely satisfactory.

 3.2.- Test on steady states at half nominal flux

We then tested the networks on sequences corresponding
also to steady-states of the speed, but at half nominal flux
(not learnt), in the range (0Ω_nom-2Ω_nom) of the rotor
speed. The flux module is maintained at half its nominal
value by vector control. The 3 networks still performed
similarly, but their error increased quasi linearly with the
rotor speed (Fig. 3). A closer observation of the results led to
the conclusion that the inaccuracy was mainly due to an error
on the flux phase, the error on the flux module being
negligible (only of 2 per thousand).
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Fig. 3: RMS error on the rotor flux φrα for the test on steady
states at half-nominal flux

This error on the flux phase can be explained by the
electromechanical equations in steady-state:

Ωγφφγφφ ....)sin(... fKKCem rsrs =≅= (2)

K: constant
f : viscous friction coefficient
γ :flux phase (i.e. phase difference between φs and φr)

Equation. (2) shows that the flux phase γ varies quasi
linearly with the rotor speed Ω. On the other hand, the flux
phase at half nominal flux is always larger than that a
nominal flux. Since the neural model was trained at nominal
flux only, it is unable to reproduce a larger flux phase. Due to
the linear dependency between flux phase and rotor speed,
the larger the speed, the larger the error made by the neural
model on the flux phase. We draw the conclusion that the
flux phase should vary in the training sequences.

 3.3.- Final training sequence

We have seen that: (i) it is sufficient to train the network
on a few steady-states of the rotor speed (section 3.1); (ii) the
accuracy of the neural model prediction of the flux module at
half nominal flux is excellent, even if the network is trained
only at nominal flux module (section 3.2); (iii) as shown by
Equation (2), the flux phase varies when the electromagnetic
torque varies. The final training sequence is thus chosen to
consist of 6 subsequences (with a different rotor speed for
each : 0.1Ω_nom, 0.5Ω_nom, Ω_nom and their opposite),
with for each of them:

The rotor speed is constant
The rotor flux module is constant and nominal
The electromagnetic torque varies linearly with the time

between –1.2Tem_nom and +1.2Tem_nom.
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Fig. 4: A part of the final training sequence

A part of the training sequence is shown on Fig. 4. After
training the neural model achieves a root mean square (RMS)
of 0.03% on this training sequence.



4.- PERFORMANCE OF THE NEURAL
MODEL

 4.1.- Test in the torque/speed space

The following tests are performed on all the 4 outputs of
the neural model obtained after training on the training
sequence presented in section 3.3. In order to validate this
model, a specific test sequence exploring the whole operating
range of the induction machine was built. This sequence
consists of a series of subsequences, each one corresponding
to specific steady-state values of the rotor speed and of the
electromagnetical torque, as shown on Fig. 5. The grid spans
the whole range of interest [-2Ω_nom, 2Ω_nom] for the
speed, and [-32Tem_nom, 32Tem_nom] for the torque. The
extreme values of the torque are unrealistic, but have been
tested in order to highlight the good precision of the model
on a large operating range.
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Fig. 5 : Test grid in the torque/speed space

This sequence has been constructed to test a maximum
of operating point in a minimum time of simulation. In order
to provide a good estimate of the performance, the test
sequence had to include not only steady-state regimes, but
also transient regimes. We thus followed a specific strategy
to describe the above grid, strategy which is illustrated in
Fig. 6. This figure represents the evolution of the setpoint
torque and speed during a part of the test sequence.
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Fig. 6 : Evolution of the setpoint variables on a part of
the test sequence.

For one absolute value of the setpoint torque, we test all
the values of the speed in the range [-2Ω_nom, 2Ω_nom].
The torque is then increased, etc. This strategy allows to visit
each point of the grid (and thus each steady-state), and also
to explore many different transients. In order to follow these
setpoints, the control of the induction machine is performed
in the following way. In order to vary the rotor speed, a load
torque is applied according to: Tl = - k * (Ω_setpoint - Ω).
The value of the gain k is chosen large enough so that steps
of the speed can be obtained. Once the speed setpoint value
is reached, we maintain the speed value by fixing an ideal
load torque given by: Tl = -Tem + fΩ. We vary the
electromagnetic torque using a vector control.  Setpoint
torque and speed are then maintained constant as long as
necessary for the machine to reach the steady-state. The
control of the load torque is of course physically unrealistic,
but it is used here in order to shorten the test sequence, and to
include very "hard" transient regimes.
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Fig. 7 : Evolution of  the module of the rotor flux during
a transient and the corresponding steady-state.

Fig. 7 shows the evolution of  the module of the rotor
flux during a transient regime and the following steady-state,



for a given step of speed and electromagnetic torque. For
each couple of (torque, speed) values, we compute (i) the
RMS errors between the outputs of the neural model and the
reference model fluxes on the transient regime (i.e. the error
during the step of a setpoint speed or torque), and (ii) the
corresponding RMS steady-state errors. These RMS errors
are shown on Fig. 8 (steady-state) and Fig. 9 (transients). In
the domain spanned by the training sequence, i.e. [-Ω_nom,
Ω_nom] x [1.2Tem_nom, 1.2Tem_nom], the RMS error
stays below 0.3% on both steady-states and transients; this
RMS error is limited to 1.5% in the whole test domain.

Fig. 8: Steady-state RMS error on the rotor flux in the
alpha axis.

Fig. 9 : Transient RMS error on the rotor flux in the
alpha axis.

 4.2.- Test on a usual input sequence
for the induction machine

We designed a second test sequence, which corresponds
to some of the most frequent events happening during the

speed control of an induction machine: a machine start-up,
different steps of load torque, and a setpoint speed inversion,
as shown on Fig. 10.
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Fig. 10 : Evolution of the setpoints (speed, torque) and of the
main variables on the test sequence.
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Fig. 11 : Error of the neural model on the rotor flux in
the alpha axis during a speed inversion.

As shown on Fig. 11, the errors are below 0.3% of the
reference model variables, and the average is around 0.1%.

5.- CONCLUSION

The results on the two test sequences give good
estimates of the high accuracy of our neural model of the
electromagnetic part of the induction machine. We could
obtain this accuracy  thanks to the thorough exploration of
the operating domain during the model training. We have
thus demonstrated the feasibility of the accurate modeling of
an induction machine using a feedback neural network.
Future work will concern the modeling of an induction
machine with magnetic saturation, i.e. including additionnal
non-linearities: this will lead us to fully explore the potentials
of neural networks for highly nonlinear modeling.
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