
In: Computational Intelligence and Applications, P. S. Szczepaniak (ed.), (Physica-Verlag, c/o Springer-Verlag,
1999).

MODELING OF ELECTROMECHANICAL SYSTEMS
USING NEURAL NETWORKS

L. Constant *, P. Lagarrigues *, B. Dagues *, I. Rivals **, L. Personnaz **
Laboratoire d'Electrotechnique et d'Electronique Industrielle de Toulouse (LEEI) (*)

Laboratoire d'Electronique de l'Ecole Supérieure de Physique et de Chimie Industrielles de
Paris (ESPCI) (**)

Abstract
We present a new model of the induction machine based on neural network
theory. After a brief presentation of the neural modeling methods used in this
work, we introduce the neural model architecture, which is based on the Park
model. We then describe the training procedure of the neural model, and give
evaluations of its performance, for example on startups with a speed vector
control.

1. Introduction

This paper deals with a new approach for the modeling of electromechanical conversion devices
based on neural networks. The design of an emulator of the process {static converter - electrical
machine - sensors} involves the simulation of complex electrotechnic systems in real time [Ben
Saoud et al., 1996]. Classic implementations of induction machine (IM) models based on the
Park transform are computationnally intensive, which prevents real time simulation. This paper
describes the design of a dynamic neural model (NM) of the IM electromagnetic part. As a
matter of fact, the ability to approximate nonlinear mappings parsimoniously and the possibility
of parallel computing make neural networks efficient in terms of accuracy and computation
time. The NM we use is a feedback multi-layer network whose global structure is based on the
Park model; this NM should thus be considered as a complement or an emulator of the latter.
The NM is implemented with the C function library Simul_NN developed at the ESPCI, and the
Park model with the software PostMac created by the LEEI.

2. Neural networks for dynamic process modeling

The goal of modeling a process is to build a mathematical model which emulates its dynamic
behavior, given some prior knowledge about the process and input-output measurements
[Rivals & Personnaz, 1996]. It is usually distinguished between knowledge-based and black-
box modeling, according to the amount of prior knowledge about the internal behavior of the
process that is available to build a model:
� A modeling procedure is termed knowledge-based if the model is built from physical insight,

where the only unknowns are parameters which are estimated from measurements.
Knowledge-based models are usually in the state-space form, their state variables and the
relationships between them having a physical meaning, like the Park model.

� If insufficient physical insight is available, but only observed data, one must resort to black-
box modeling. A discrete-time black-box model is a recursive filter whose outputs are
parameterized functions of its past external inputs and state variables. In order to be able to
describe any complex dynamic process, the family of parameterized functions should be as
flexible as possible, like neural networks [Hornik et al., 1989].

The fact that this paper deals with neural networks might suggest that we are dealing with black-
box modeling; actually our approach is partly knowledge-based, partly black-box. As a matter

of fact, the process we model is not, at least not in a first step, the IM itself, but the PostMac
simulator of the IM, whose computations are based on the Park transform. We thus have entire
knowledge about the process, and are free to use it to build a model. Our motivations for the
use of this knowledge are the following:
� A reliable model of a complex process like the IM cannot be entirely obtained from input-

output data. Even if a good input-output model could be designed, it is of interest for control
purposes that state variables like the magnetic fluxes be available. Our aim is thus to build a
model with the same inputs, state variables and outputs as the PostMac simulator. This leads
to a modular modeling approach.

� We want to make use of the parsimony and of the possibility of parallel computing of neural
networks. Therefore, we will not try to copy the structure of each module, but to emulate it
with a black-box neural network.

� The modular approach opens the way to the modeling of more complex behaviors of the IM
(with magnetic saturation for example), this time from measurements on a real IM.

This modular approach leads to the following procedure. Each module can be considered as a
separate process in the input-output form:

Y k f Y k Y k n U k U k mp p p() ((), ... , (), (), ... , ())= − − − −1 1
(1)

where Yp(k) is the output vector and U(k) is the input vector at time k. The process is noiseless
since it is simulated. The goal of the modeling procedure is to build a NM which predicts the
process output Yp(k) as accurately as possible, given the past inputs and outputs. Theoretically,
this NM can be either a feedforward one:

Y k Y k Y k n U k U k mp p() ((), ... , (), (), . .., ();)= − − − −ϕ θ1 1
(2)

or a feedback one:

Y k Y k Y k n U k U k m() ((), ... , (), (), . .. , ();)= − − − −ϕ θ1 1 (3)

where ϕ is the nonlinear function implemented by a neural network with weights θ. In order to
adjust the weights of a model with a given architecture (number of NMs and connectivity) so
that ϕ becomes as close as possible to f, the most common method consists in minimizing
iteratively a quadratic cost function of the prediction errors, cost function which is defined over
a training sequence of input-output pairs {U(k), Yp(k)}k=1toN. At iteration i, its value is:

() () ()J E k W E k Y k Y k W Y k Y ki

k

N
i T i

k

N

p
i T

p
i() () () () () () ()θ = = − −

= =
∑ ∑

1 1 (4)

where W is a weighting definite positive matrix, and Y i (k) is the output of the model at time k
and iteration i, i.e. with weights θ i. The cost function J(θ i) is minimized by a gradient descent
followed by a quasi-newtonian method. The gradient is computed either in a directed fashion
[Nerrand et al., 1993], i.e. using the Teacher Forcing algorithm [Jordan, 1985], or in a semi-
directed fashion, i.e. using the Backpropagation-Through-Time algorithm [Rumelhart et al.,
1986]. The universal approximation property of neural networks [Hornik et al., 1989]
guaranties that ϕ can be arbitrarily close to f, provided the network has a sufficient architecture.
To select a network architecture, the performance of the network models are estimated on a
validation sequence, in a feedback fashion since the performance of interest is not only a one-
step-ahead prediction, but the simulation over a large time-horizon. If the training and validation
sequences are chosen according to the future use of the model (type of inputs, sample period,
etc.) and if the training algorithm is efficient, then the training and selection procedures will lead
to a model whose output is arbitrarily close to the process output in the domain covered by the
training and validation sequences.

3. From the Park model to the neural model structure

A stator fixed reference frame is used for the Park transform, which leads to a system of four
differential equations governing the behavior of the fluxes φsd, φsq, φrd and φrq [Caron & Hautier,
1995] [Notelet & Seguier, 1994]. They depend on the Park stator voltages Vsd and Vsq, and on
the rotor speed Ω. This system is modeled by the feedback part of the NM shown in Figure 1.
Since the stator fluxes are linearly dependent on the inputs, each of them is computed by one
linear neuron. The Park model shows that the rotor fluxes are nonlinear functions of the inputs:
the computation of each rotor flux thus necessitates a nonlinear network (with nine sigmoidal
hidden neurons and one linear output neuron). The structure of the static part of the model is
settled in the same way. Each Park current (Isd, Isq) is computed by a linear neuron whose
inputs are the corresponding Park fluxes. The module which computes the electromagnetic
torque is a nonlinear network (with ten sigmoidal hidden neurons and one linear output
neuron). The optimal number of hidden neurons in each module was established according to
the results of trials with an increasing number of neurons.

Inputs

φrd(k-1)

φsd(k-1)

φsq(k-1)

φrq(k-1)

φsd(k)

φsq(k)

φrq (k)

 φrd(k)

Ω (k)

Vsd(k)

Vsq (k)

Isd (k)

Isq (k)

Cem(k)

Sigmoidal hidden neuron Linear output neuron

FEEDBACK PART FEEDFORWARD PART

q
-1

Figure 1: Neural model structure

4. The training of the neural model

4.1. Choice of the training sequence

In order to estimate the parameters of the NM, we have to build up a training sequence which
describes the behavior of the PostMac simulator of the IM, i.e. the "process" variables must
explore its whole operating range. The duration of the training sequence is 0.27 second with a
sampling period of 10 µs (27000 successive samples for each variable). To facilitate the
training, all variables are set to the same scale.

0 0.05 0.1 0.15 0.2 0.25
-1

0

1

-1

0

1

t (s)

φsd p

φrd p

Ω p

Vsd p

Vsq p

Graph 1: Inputs and fluxes φsd p and φ rd p of the training sequence

4.2. Training each separate neural module

We first consider the feedback part of the NM (Figure 1). Each flux is computed by an
independent module of the complete NM. We start by training these modules in a directed
fashion (i.e. the output of each module is computed from the process flux), and improve their
accuracy by training them in a semi-directed fashion (i.e. the module output is computed from
its previously computed value). Finally we assemble the four modules to train the complete flux
model in a semi-directed fashion. Graph 2 shows the rotor flux error on a validation sequence.
The square root of the mean-square-errors (RMSE) of the four fluxes is 8.1 10-3.

Abs[φrd p /100]
Abs[φrd p - φrd m]

Abs[φrq p /100]
Abs[φrq p -φrq m]

0 0.05 0.1 0.15 0.2 0.25 t(s)

0

0.02

0

0.02

Graph 2: Rotor flux error on a validation sequence (IM start)

We use the same training sequence to train the feedforward part of the complete NM, which is
composed of three independent modules, one for each stator current and one for the
electromagnetic torque. All of them are feedforward models. After training, the value of the two
currents RMSE is 4.15 10-7

 on the validation sequence, and the value of the electromagnetic
torque RMSE is 8.72 10-4

.

 Cemp/100

 Abs[Cemp - Cemm]
0

0.01

0 0.05 0.1 0.15 0.2 0.25 t (s)

Graph 3: Electromagnetic torque error on a validation sequence (IM start)

4.3. Training the complete neural model

We can now assemble all modules to obtain the complete NM described in Figure 1. A
validation sequence is build as an off-load start with a speed vector control: a rotor flux setting
at zero speed followed by a speed step response. On this validation sequence, the value of the
global RMSE (i.e. of the four fluxes, the electromagnetic torque and the two currents) is 7.43
10-2. To improve the accuracy of the model, we continue the training on a new training
sequence obtained by adding the validation sequence to the previous training sequence. After

training, we test the NM on three new validation sequences: three machine startups with a
mechanical load, and three different reference speeds (see Table 1).

Reference speed 0.5*Ωn Ωn 1.5*Ωn

Global RMSE 5.95 10-2 4.75 10-2 2.97 10-2

Table 1: Global RMSE on validation sequences (Ωn: nominal speed)

Abs[I sq p -Isq m]Abs[I sq p/100]

0.05

0

Abs[Cemp/100] Abs[Cemp-Cemm]

Abs[I sd p/100]

0

Abs[I sd p - Isd m]
0.2

0

0.2

1
0

2

-5

0

5

-5

0

5

0 0.05 0.1 0.15 0.2 0.2 t(s)

Cemp

Isd p

Isq p Isq m

Cemm

Isd m

0 0.05 0.1 0.15 0.2 0.2
5

t(s)

Graph 4: Validation test at the nominal speed

5. Conclusion

Our results already demonstrate the feasibility of the accurate modeling of an induction machine
with feedback neural networks. Nevertheless, these results can be improved by the use of more
extensive training sequences, especially at low speed. An important advantage of neural
modeling is that the knowledge of the electrical parameters of the machine is not necessary, but
only input-output data. Our model can thus be adapted to the modeling of a machine with
magnetic non-linearities, provided that suitable training sequences are available (either simulated
or measured).
The aim of our next study is to associate our neural induction machine model to a static
converter model, in order to implement this global model on a real experimental device, and to
compare its rapidity to that of a classic Park model.

Notations
Vsd, Vsq Park stator voltages
Isd, Isq Park stator currents
φsd, φsq Park stator fluxes
φrd, φrq Park rotor fluxes
Cem electromagnetic torque
Ω rotor speed
p process variable index
m neural model variable index

References

BEN SAOUD S., DAGUES B., SCHNEIDER H., METZ M., HAPIOT JC., 1996, Real time
emulator of static converters / electrical machines- Application to the test of control unit,
ISIE' 96, 17-20 June, 1996, WARSAW, Poland

CARON J.P., HAUTIER J.P., 1995, Modelisation et commande de la machine asynchrone,

Méthodes et pratiques de l�ingénieur, Technip.

HORNIK K., STINCHCOMBE M., WHITE H. (1989), Multilayer feedforward networks are

universal approximators, Neural Networks 2, pp. 359-366.

JORDAN M. I. (1985), The training of representations for sequential performance, Doctoral

Dissertation, University of California, San Diego.

NERRAND O., ROUSSEL-RAGOT P., PERSONNAZ L., DREYFUS G. (1993), Neural

networks and nonlinear adaptive filtering: unifying concepts and new algorithms, Neural

Computation 5, pp. 165-199.

NOTELET F., SEGUIER G., (1994), Electrotechnique industrielle, Lavoisier TEC&DOC.

RIVALS I., PERSONNAZ L., 1996, Black-box modeling with state-space neural networks, in

Neural Adaptive Control Technology, R. Zbikowski and K. J. Hunt eds.,World

Scientific, pp. 237-264.

RUMELHART D. E., HINTON G. E., WILLIAMS R. J. (1986), Training internal

representations by error back-propagation, in Parallel Distributed Processing: explorations

in the microstructure of cognition. Vol.1 : Foundations, D. E. Rumelhart, J. L.

McLelland and the PDP Research Group eds, MIT Press, Cambridge MA, pp. 318-362.

