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Abstract : A neural-network based approach to the control of non-linear dynamical systems such
as wheeled mobile robots is presented. A general framework for the training of neural controllers is
outlined, and applied to the lateral control of a vehicle for the path following and trajectory servoing
problems. Simulation as well as experimental results on a four-wheel drive vehicle equipped with
actuators and sensors are shown.
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Résumé : Nous décrivons une approche neuronale de la commande de processus dynamiques
non-linéaires tels que les robots mobiles à roues. Nous esquissons les grands traits d'un cadre
général pour l'apprentissage de correcteurs neuronaux, et appliquons nos méthodes à la
commande de la direction d'un véhicule pour son asservissement sur trajectoire. Nous illustrons
notre propos à l'aide de simulations, et présentons les résultats expérimentaux obtenus sur un
véhicule tout-terrain équipé des capteurs de navigation et des actionneurs nécessaires au
pilotage.

Mots-Clés : asservissement sur trajectoire, commande avec modèle de référence, commande
non-linéaire, commande optimale, robots mobiles, réseaux neuronaux bouclés, suivi de trajectoire,
véhicules autonomes.



1. INTRODUCTION

We address the lateral control of an autonomous vehicle along a predefined trajectory using
neural networks. Experimental results on a full-scale outdoor robot, a standard four-wheel drive car
equipped with the sensors and actuators needed for navigation and control, demonstrate that
neural techniques can be applied to real-world problems in robotics.

Classical control theory provides many design techniques to achieve performances
specified in terms of rise and settling-time, gain and phase margin, bandwidth� These
methodologies are well suited to the design of linear controllers for linear systems, with guaranteed
stability and robustness. They are, however, of restricted use for control problems involving non-
linear dynamic processes with inequality constraints on state and control variables, such as
wheeled mobile robots with actuator limitations.

Optimal control theory has been widely used to solve such non-linear, constrained
problems. But the conventional scheme of optimal control has its own drawbacks. Finding the
control trajectory that minimizes the performance measure often requires the solution of non-linear
differential equations. This can be achieved by using iterative numerical methods (quasi-
linearization, steepest descent�) which are time consuming, or by dynamic programming ; both
miss closed-form expressions for the feedback control laws.

Neural networks offer an alternative to the usual formulations and solutions of constrained
optimization problems. Their approximation capabilities make them of possible use as models of
the process to be controlled, as well as suitable controllers parameterizing non-linear optimal
feedback control laws. In addition, the performance measure which, when minimized, corresponds
to the optimal behaviour, can be defined with respect to a reference model. Finally, generic
algorithms using a gradient-based approach to achieve the minimization of the performance
measure - regardless of model and controller complexity - have been established.

In the second part of this paper, we present a general framework for the training of neural
networks for control purposes. Part 3 is devoted to our application : the lateral control of a vehicle
for the path following problem. We first present our test-vehicle and its neural model. We
subsequently apply the control scheme developed in part 2 using two different approaches of the
path following problem. Simulation and experimental results are shown in both cases. They are
discussed in part 4.

2. TRAINING OF RECURRENT NEURAL NETWORKS FOR NON-LINEAR CONTROL

We assume that the process to be controlled is described by the following discrete-time
model :

{S(k+1) = f(S(k), U(k))
Y(k) = g(S(k))

where S(k), Y(k) and U(k) are the state, output and control vectors at time k respectively, and f and
g are unknown non-linear functions.

The control system consists of the following components :
- a neural network predictor model  with state Sm  and output Ym, is first trained :

{Sm(k+1) = fNN(Xm(k), U(k))
Ym(k) = gNN(Sm(k))

where fNN and gNN are non-linear functions implemented by neural networks, and where the state
input Xm may take different values depending on the particular predictor choice. For a recursive
predictor, Xm(k) = Sm(k) ; for a non-recursive predictor, Xm(k) is often taken to be equal to the
process state Xp(k). The rationale of this choice has been discussed in [NER92a].
- a reference model  (possibly a simple delay) is designed, which generates the desired output
sequence {Yr(k)} from the setpoint sequence {R(k)} :

{Sr(k+1) = fr(Sr(k),R(k)) 
Yr(k) = gr(Sr(k))

where Sr(k) is the state of the reference model at time k, Yr(k) its output, R(k) the setpoint vector,
and fr and gr are known (possibly linear) functions.
- the neural controller, with weight matrix C, computes the control sequence {U(k)} from the
setpoint sequence and the model state input, and can therefore implement any suitable non-linear
state-feedback control law U(k) = y(Xm(k), R(k)) .

The aim of the training is to compute the weights of the neural controller, either adaptatively
or non adaptively, so that the output of the process becomes as close as possible to the output of
the reference model. We restrict the scope of our presentation to a non-adaptive context in which
the process itself is not taken into account during the training of the controller (for a general
presentation, including adaptive control schemes, see [NER 93a]). This approach of neural control
is well suited to the off-line validation of controller structures, provided the neural model of the
process is accurate enough, and is often encountered in the literature (e. g. [NAR 91]).



2.1 Training phase

The training algorithms aim at minimizing a cost-function J by a gradient-based technique. J
involves the squared difference Em between the output of the model and the output of the
reference model over a time horizon of length Nc  :

J = 
1
2 ∑

k=Nt-Nc+1

Nt
 »Em(k)»2 = 

1
2 ∑

k=Nt-Nc+1

Nt
 [Yr(k) - Ym(k)]T W [Yr(k) - Ym(k)]

where W is a weighting matrix, Nc≤Nt (for example Nc=1 is chosen if a desired value exists for the
final output only) and Nt is the number of time steps used for the evaluation of the gradient of the
cost-function ([NER92b][NER93b]).
The weights will be modified iteratively in the direction opposite to that of the gradient :

∆Cij = - µ 
∂J
∂Cij = - µ 

∂
∂Cij ( 

1
2 ∑

k=Nt-Nc+1

Nt
 »Em(k)»2 )

where µ is the gradient step.
The value of the cost-function J, hence of its gradient, depends on the NN predictor model

used for the computation of Ym. The NN predictor model is either recursive or non-recursive, each
case leading to a specific training algorithm.

a) The UD control algorithm (" UnDirected " algorithm, see figure 1)

If the NN predictor model is recursive, the state input Xm(k) takes the values :
Xm(0) arbitrary, and Xm(k) = Sm(k) ¢ k>0.
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FIGURE 1
Controller training architecture associated to an UD control algorithm.

At k=0 only, the state inputs of the model are initialized to arbitrary values. The controller
and the predictor build up a recurrent network, and the computation of the gradient - with respect
to the controller weights - is achieved using dynamic back-propagation over the time-horizon Nt
([NER92b], [NAR90], [NAR91]).

b) The D control algorithm (" Directed " algorithm, see figure 2)

If the NN predictor model is non-recursive, the state input Xm(k) takes the values :
Xm(k) = Sr(k) ¢ k.
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FIGURE 2
Controller training architecture associated to a D control algorithm.

Thus, at every time step, the state inputs of the model are taken equal to the values of the
state variables of the reference model. The controller and the predictor now build up a feedforward



network, and the computation of the gradient can be achieved using static back-propagation. For
this algorithm to be applicable, it is necessary that the reference model specifies the whole state
(not only the desired output).

2.2 Operating phase

During the operating phase, which follows the training phase, the weights are frozen and
the controller is used as shown in figure 3. The reference model being implicit (that is, its output is
not fed to the neural controller during training [LAN79]), it is not part of the operating control
system itself.
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FIGURE 3
Control system during the operating phase.

3. APPLICATION TO THE LATERAL CONTROL OF AN AUTONOMOUS VEHICLE

3.1 The vehicle REMI and its model

Our testbed is the SAGEM autonomous navigation test vehicle REMI (Robot Evaluator for
Mobile Investigations), a four-wheel drive vehicle equipped with actuators and sensors. Our aim
being here the lateral control, we are concerned with its steering system only. The steering
actuator monitors the angular position of the steering wheel, and the velocity is controlled by a
human operator using the brake and throttle pedals. Thanks to an inertial dead-reckoning unit and
an odometric sensor, a navigation module computes position, orientation and velocity of the
vehicle. The navigation and piloting modules are implemented on a 68030 board running under the
operating system OS9. The interfaces with the hardware are achieved with specific boards. More
details about REMI can be found in [VDB93][FRA93]. As pointed out in part 2, an accurate model
of the vehicle is required for the training, since the controller is non-adaptive. Thus, both the
kinematics of the vehicle and its dynamics were identified, using two neural networks.

For the kinematic part, the classically adopted " bicycle " model [JUR93][SIN90] proving to
be unsatisfactory, we performed a (non-adaptive) identification of the non-linear relationship (3) -
given below - between the heading y of the vehicle and the position b of the steering wheel (Figure
4). We used a model based on the bicycle model, including a neural network which gives a better
estimate of the geometrical non-linearity (fNN) than the tan(.) relationship of the bicycle model
( y(k+1) = y(k) + v(k) (∆T/L) tan (b(k)) ).

The vehicle dynamics can be separated into actuator dynamics and vehicle-ground
interactions . The latter are due to the flexing and slipping in the contact between the vehicle and
the ground, and are negligible at low speed (<4 m/s). But we assume that, for a given trajectory,
the upper limit of speed for which the vehicle will not slip will not be reached. Moreover, we
consider that the ground is flat (nevertheless, we achieved good performances on uneven ground).
Thus, the dynamics reduces to the steering actuator dynamics. We identified the relationship
between steering command a and steering wheel position b with a second neural net consisting of
two neurons with linear saturated activation function, neglecting other dynamical effects than a
dead-time and the angle and velocity saturations of the actuator. Measurement noise being
dominant, both identifications were performed with recursive predictors [NER93b].

The overall model, with state S(k) = [x(k), y(k), y(k), b(k), v(k)]
is described by the following state equations :

(1)     x(k+1) = x(k) + v(k) ∆T cos y(k)
(2)     y(k+1) = y(k) + v(k) ∆T sin y(k)

(3)     y(k+1) = y(k) + 
v(k) ∆T

L  fNN(b(k))

(4)    b(k+1) = satbmax ( b(k) + sat∆bmax ( a(k-N) - b(k) ) )
(5)    v(k+1) = v(k) + fu(S(k), Q(k), B(k))
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FIGURE 4
The variables of the model.



where :
- x , y are the coordinates of the guide-point G located at the center of the rear axle (for the
justification of this choice, see [FRA93][SIN90]) in (X,Y) ;
- y is the heading of the vehicle ;
- b is the steering wheel angle ;
- a is the steering command ;
- v is the vehicle velocity measured at the guide-point G ;
- L=2.85 m is the distance between axles ;
- satX(.) is the saturation function between -X and +X ; bmax and ∆bmax are the values of the angle
and velocity saturations, identified at respectively 0.5rd and 0.2 rd/s by the neural network
representing the dynamics of the vehicle ;
- ∆T=0.04 s is the sampling period ;
- N is the actuator dead-time, experimentally identified as being ~ 4 (4 ∆T = 160 ms) ;
- fNN is the non-linear function implemented by the neural network representing t
he kinematics of the vehicle.
- the state variable v is governed by a relationship involving the control inputs Q (throttle) and B
(brakes) characterized by the unknown function fu (its knowledge is not necessary for the lateral
control of the vehicle).
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orientation error, and y the transversal error. Part 3.2.2 is devoted to this approach, termed
" posture-based " approach.
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a) Heading-based approach.                                                        b) Posture-based approach.
FIGURE 6

Target-point and relative coordinates definition during the operating phase.
(T = target-point ; O = orthogonal projection on the tangent to (R) through P ; G = guide-point of the vehicle)

3.2.1 The heading-based approach

a) Training phase and simulation results

The neural controller task is to make the model output ym as close as possible to the output
of a reference model yr which defines the desired way of bringing the heading to zero. Feedback is
thus required only from the partial state :

Sm(k) = [ym(k), bm(k), vm(k)]
The cost-function to minimize over a trajectory of time-length Nt involves only the heading ym :

J = 
1
2 ∑

k=Nt-Nc+1

Nt
 (yr(k) - ym(k))2 = 

1
2  ∑

k=Nt-Nc+1

Nt
 em2(k)

The reference output yr is defined as the output of the linearized model (yr(k+1) = yr(k) +
v(k) (∆T/L) ar(k-N) ) controlled by a minimum-time controller with inequality constraints on ar and
∆ar (corresponding to the angle and velocity saturations bmax and ∆bmax of the actuator). The
parameters of the reference controller are computed for various initial conditions, with constant
speed on each trajectory, in which case the computation is very simple. Since the reference model
specifies only the desired output (and not the whole state), the training has to be performed with an
UD algorithm. We choose Nc=Nt, Nt being sufficiently long for the reference model to reach y=0
(figure 7b). The initial conditions for the vehicle model and reference model are taken in the range
yr(0)=ym(0)[ [-p/2; +p/2] rd and v[[0;10] m/s.
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         a) Controller training architecture using an UD algorithm.                      b) Reference heading.
FIGURE 7

Heading-based approach : training of the steering controller with  minimum-time control reference model.

To avoid the drawbacks of a bang-bang type controller, we used reference models with a
lower constraint on ∆ar than the real value of ∆bmax (∆bmax = 0.20 rd/s). The best trade-off



beetwen performance and driving comfort was determined experimentally on REMI, leading to the
choice of ∆amax = 0.175 rd/s. Figure 8 shows the output a of the neural controller as a function of v
and y , for these two values of ∆amax.
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FIGURE 8

Output of the neural network controller trained with two different reference models.

The neural controller is a MLP (2,3,3,1), with inputs y, v and output a (feeding b to the
network did not improve the performance).

b) Operating phase and experimental results

The distance D to the target-point is chosen to depend linearly on vehicle velocity :
D = d0 + Fv . v .

The values of the parameters d0 and Fv were determined by computer simulations.
The controller has been used successfully on various trajectories. Figure 10a shows the

experimental path following performance obtained along the trajectory of figure 9. The transversal
error et (distance to the closest point of the reference trajectory) is kept very small (< 60 cm, the
curvature reaching 0.1 m-1) with speeds up to 25 km/h. The heading error ey (defined with respect
to the tangent to (R) at the closest point of the reference trajectory) is kept smaller than 0.1 rd.
Figure 10b shows the behaviour of the vehicle for the trajectory servoing problem, the vehicle
being initialized far away from the reference trajectory.
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FIGURE 9
Map of the reference trajectory (around the SAGEM research center, with total length ~ 600 m) used for the path

following and trajectory servoing experiments of figures 10 and 13.
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FIGURE 10
Experimental results on the vehicle REMI using the heading-based approach

(et = transversal error, ey = heading error, a = steering command (neural controller output), v = vehicle velocity).

3.2.2 The posture-based approach

a) Training phase and simulation results

The neural controller task is now to bring the model output xm as close as possible to the
posture xr defined by a reference model. Feedback is now required from the state :

Sm(k) = [ym(k), ym(k), bm(k), vm(k)]
The cost-function to minimize over a trajectory of time-length Nt involves the posture, thus ym and
ym :

J = 
1
2  ∑

k=Nt-Nc+1

Nt
 (yr(k)-ym(k))2 + Fy . (yr(k)-ym(k))2  =  

1
2 ∑

k=Nt-Nc+1

Nt
 »Em(k)»2

where Fy is a weighting factor which has to be determined.



In this case, the computation of a minimum-time controlled reference model is quite
difficult ; without taking the velocity saturation of the actuator into account, it is already a non-trivial
task and requires some tedious algebra (see [RIN93]). Another choice could be to fix a distance
depending on vehicle speed within which the robot should be brought back on the reference
trajectory, and to define the path (polynomial (e. g. [SHI90]), splines�) satisfying the boundary
conditions and the constraints on curvature and curvature variation. We found it more tractable to
use a simple " identity " reference model :

xr(t) = [0, 0]
and to let the cost-function, hence the weighting factor Fy, determine entirely the desired
behaviour.
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         a) Controller training architecture using an UD algorithm.                                     b) Reference posture.
FIGURE 11

Posture-based approach : training of the steering controller with identity reference model.

We performed the training using an UD algorithm with Nc=Nt, Nt being chosen sufficiently
long for the model to stabilize on the y=0 trajectory. The state of the model was randomly initialized
in the range y(0)[[-p;+p] rd, y(0)[[0;10] m, and with constant speeds v[[0;10] m/s. As expected,
the choice of the weighting factor in the cost-function proves to be decisive. Figure 12 shows
simulation results obtained with three different values for Fy , which led us to the choice of Fy =10.
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FIGURE 12
Simulation of the model behaviour depending on the weighting factor Fy in the cost-function used for training.

The neural controller is a MLP (3,3,3,1), with inputs y, y, v and output a (as in the heading-
based approach, b is not used).

b) Operating phase and experimental results

During the operating phase, the distance D to the target-point was also chosen to depend
linearly on vehicle speed, and the appropriate values of d0 and Fv for this case were also
determined by computer simulations.

Figure 13a shows the experimental path following performance of the controller on the
same trajectory (the trajectory shown in figure 9). With an equivalent speed profile, both the
transversal error (et<35 cm) and the heading error (ey<0,05 rd) are smaller than in the heading-
based approach. Figure 13b shows the behaviour for the trajectory servoing task : the trajectory is
reached without overshoot.
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FIGURE 13
Experimental results on the vehicle REMI  using the posture-based approach

(et = transversal error, ey = heading error, a = steering command (neural controller output), v = vehicle velocity).

4. DISCUSSION

Both approaches, especially at high speed, lead to better results than the classical
approach used before, consisting in LQ control (with fixed gains), based on the linearized model,
without taking the actuator dynamics into account. The posture-based approach leads to better
behaviour for the trajectory servoing task. This is an important property, which plays a role when a
relocalization procedure is activated for example. The choice of the target-point is also extremely
important : we compared our strategy to the commonly used geometric approach where the target-
point is simply the closest point on the trajectory, and where a feed-forward curvature term is
added to the command output by the feedback controller [RIN93][VDM93]. Our approach proved to
be much more robust with respect to curvature variations, and does not necessitate the estimation
of the curvature, which is often a problem (be it by image processing [JUR93], or with a trajectory
defined by a series of setpoints - which is our case).

We would further like to stress the following advantages of the neural control scheme
developed in part 2, of both theoretical and practical nature, as they are illustrated by our
application :`
- The use of a reference model allows roughly two types of control policies : (i) In the case where a
reference model can be defined, the right choice of the learning algorithm and of its parameters
(Nc, Nt) makes it possible to assign explicitly its dynamics to the closed-loop system ; this was
shown with the heading-based approach, where an optimal controller was learned by the neural
network ; not only do we obtain optimal solutions in the sense of a chosen criterion (and to a given
accuracy) but, in addition to their optimality, these solutions take a closed-form expression, as
pointed out in [RIN93]. (ii) In the case where it is difficult to formulate the desired dynamics
explicitly, the optimal behaviour is defined implicitly by the cost-function, much as in optimal
control ; this was illustrated with the posture-based approach.



- Any non-linear model of the process  can be used, be it a neural network, or a physical model,
provided its jacobian can be evaluated and used for the computation of the gradient. Known non-
linearities such as saturations introduced by the actuators can be simply incorporated in the model
using saturation functions instead of standard sigmoids. The algorithms can then be applied
regardless of the complexity of the model (and of the controller).
- The neural controllers are of small size (at most ten neurons), making their implementation easy.
There is no need for special purpose hardware  to operate in real time, even at high frequency
control rates (up to 12.5 Hz for the heading-based approach, 5 Hz for the posture-based). Neural
networks are well suited to real time operation, in contrast to traditional, iterative methods of
solving optimal control problems.

5. CONCLUSION

The neural control scheme outlined in this paper applies successfully to non-linear systems
such as wheeled mobile robots with actuator limitations. As a demonstration, the design of a neural
controller for the trajectory following and servoing problem using two different approaches has
been presented, already showing the promising performance and flexibility of the neural control
framework. Future studies will deal with the extension of this framework to more difficult operating
conditions (higher speed, rough terrain) requiring adaptive identification and control schemes. This
work is also being currently extended to the velocity control using brakes, throttle and gear.
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